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Abstract

Diffraction of Voyager 2's 3.6 and 13 cm wavelength (,_) microwaves by the Uranian rings is re-

moved through an inverse Fresnel transform filtering procedure that accommodates the significant

eccentricity of the rings. Resulting 50 m resolution profiles at two observation longitudes: (i) reveal

remarkably detailed and longitudinally varying structure, (ii) provide eccentricity gradient profiles of

Rings c_,/3, and c which bring into question current theoretical models for observed rigid precession,

and (iii) suggest that two possible unseen satellites, with semimajor axds 42901 km and 47166 kin,

may confine some of the very sharp edges observed via resonant interactions.

The observed invariance of integrated opacity as ring width changes implies that Rings _, 7,

6, and c are not monolayers and that the thickness of Ring e may vary in inverse'proportion to

its width. Near periapse Ring c must be > 10 layers thick. A comparison of measurements of

differential opacity Ar -- r(3.6 cm) - r(13 cm) and differential phase delay ACe - ¢c(13 cm) -

a¢c(3.6 cm) with a "classical" noninteracting particles model implies: (i) for the five innermost

rings, the measured ACe�r(3.6 cm) and Ar are inconsistent (_ 40-75x10 -a cycles/unit optical

depth and __ 0, respectively), and (ii) for Ring e, an inverse power law size distribution with exponent

q _ 2.75, minimum size cutoff <_ 2 cm, and maximum size cutoff > 1.5 m matches Ar and ACe.

Assuming an ice-like density 1 g-cm -a, this implies a surface mass density a > 50 g-cm -2 and a

ring thickness h >_a few meters. If the possibly anomalous A¢¢ is disregarded, the effective particle

radius may be > 70 cm independent of q, implying that cr> 80 g-cm -2 and h _> 30 m.

The anomalously large ACe of the inner rings does not appear to be due to coherent interactions

between ring particles. Exact computations for extinction by 2-5 spheres show that: (i) when

particles are large (a/k > i), geometric shadowing is a good model for the interactions, and for

an isolated pair, shadowing persists to separation d _ lOa2/_, (ii) averaged over all orientations,

coherent interaction between pairs of spheres of arbitrary size is negligible when d _>5a, corresponding
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to volume fraction < 1%, and (iii) generally, coherent interactions decrease A¢c relative to the

noninteracting case.

A "pairwise" approximation which includes coherent interactions between pairs of spheres but

neglects higher-order interactions agrees to within a few percent with the exact computations for

three spheres except when particles are arranged in endfire configuration. It predicts that, for

a monolayer distribution of large particles, 7" decreases with increasing packing fraction f in a

manner consistent with the shadowing model, whereas for small particles (a/A << l) 7- increases

with increasing f.
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Chapter 1

Introduction

Voyager 2's brief encounter with Uranus on January 24, 1986 resulted in an enormous increase in

our knowledge over that which had been accumulated during the 205 years since William Herschel's

discovery of this distant blue planet. Its two-billion mile distance from Earth renders it too faint to

be visible with the naked eye (except under good seeing conditions), and has made the collection

of information about Uranus from Earth-based measurement very difficult. Our first close-up look

through the eyes and ears of Voyager has provided much information which we never could have

suspected, much less obtained, before.

This work describes the results of one of the many experiments on board Voyager, the "radio

occultation" experiment, in which two coherent radio signals at wavelengths of approximately 3.6

and 13 cm were transmitted from Voyager through the Uranian rings toward Earth. As the signals

passed through the rings, they were reduced in amplitude, shifted in phase, and diffracted. Two

hours and 45 minutes later, the perturbed signals were received on Earth at three antennas ill

Australia. The total time that Voyager spent behind thc rings and planet was just over three hours;

the analysis of this data has so far taken over three years, and the observations presented here will

undoubtedly result in even more analysis time as theoreticians incorporate these results into their

models of tile Uranian rings.

1.1 Rings of the Gaseous Giants

Until about a decade ago, it was thought that planetary rings were a rare occurrence. Saturn

had been known to have an extended ring system since the early days of telescopic observation,
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but it was not until March, 1977, during the observation of a star passing behind Uranus (stellar

occultation), that it was discovered that a second planet in the solar system possessed rings (v., e.g.,

Elliot et al., 1977). Soon afterward, Voyager 1 discovered tenuous rings around Jupiter (Owen e_ al.,

1979), confirming an earlier proposal by Aeufia and Ness (1976) that the low energetic-particle fluxes

measured by Pioneer 10 inwards of Amalthea's orbit were due to an undiscovered ring or a satellite.

Stellar occultations later revealed what appeared to be a set of incomplete arc rings around Neptune

(Hubbard el al., 1986). The recent encounter of Voyager 2 with Neptune in August, 1989 showed

that these rings extend around the entire circumference of the orbit, but appear clumpy in nature.

Thus we have now found that rings exist around each of the gaseous giants. The characteristics of

the ring systems differ greatly, however. For the following discussion, a schematic of the four known

ring systems is shown, to scale, in Figure 1.

Saturn has the most extended ring system, with the three main rings (Rings A, B, and C)

spanning a distance of almost 70,000 km, most of which is occupied by ring material. Recent Earth-

based and Voyager observations have discovered four additional, mostly tenuous, rings named D, E,

F, and G. The particles in Saturn's rings decrease in number density in approximately inverse cubic

proportion to their sizes over the millimeter to several meter size range (Marouf et al., 1983; Zebker

el al., 1985). Their typical normal optical depth 1 at microwave wavelengths is in the range of 0.1 to

about 1 or 2 (Tyler el al., 1983).

In contrast, the nine main Uranian rings are narrow, dense, and sharp-edged. Although spread

over a region approximately 10,000 km wide, about 99% of this region is essentially empty, with

optical depth < 10 -4. The microwave optical depths of the main rings range from .-_ 0.5 to values

approaching 6 or 7 (Gresh el al., 1989), the largest values observed in any ring system. Particle

sizes that dominate the optical depth are relatively large (_> 1 m) if it is assumed that the size

distribution is Saturn-like, but could be smaller (> l0 cm) if the distribution is less steep than an

inverse cubic power law.

Jupiter's ring system is composed of a "main band", a "halo", and a "gossamer" ring (Showalter

et al., 1985; Showalter el al., 1987). The main band extends over a radial distance of about 7000 kin.

It contains a component of micron-sized particles with an optical depth at visual wavelengths of only

a few x 10-6. A component of macroscopic bodies also exists, and contributes a similar amount to

the optical depth. The halo, internal to the main ring, extends over approximately 30,000 km

1Optical depth is a logarltlunlc measure of attenuation of a signal by ring material. The intensity of a signal
passing through the ring in a direction perpendicular to the ring plane is attenuated by e -r, where r is the normal
optical depth.
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FIG. 1: Schematic of the four ring systems of the gaseous giants. Planets and rings are to scale.

Not shown are the gossamer ring of Jupiter, which extends outward beyond the main band, and

Saturn's Ring E, which extends from ,-- 3 to ,,_ 8 Saturn radii.
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radially and up to 20,000 km in vertical thickness, and a so-called "gossamer" ring extends outward

from the main component, and appears to be composed of micron-sized grains.

Finally, Voyager 2 found Neptune to have rings at radii of approximately 42,000 km, 52,300 km,

and 62,900 km, with additional tenuous material distributed throughout the ring region (Smith el

al., 1989). The ring at 62,900 km is composed of a low optical depth component which extends

around the entire circumference of the orbit, and a clumpy component with higher optical depth of

,-_ 0.1, which extends, in three distinct pieces, over about 30 °. This ring "arc" appears to be the

feature responsible for most pre-Voyager Earth-based observations (Nicholson el al., 1989; Smith el

al., 1989). Preliminary analysis indicates that the Neptunian rings contain a significant fraction of

dust.

The search for reasons for these dramatic differences in morphology, extent, and particle proper-

ties among the four known ring systems has become a fruitful area of research over the last decade or

so. Each planetary system is composed of a large central body, a number of smaller massive bodies

(satellites) and a collection of even smaller ring particles. By far the dominant force shaping the rings

is gravity; however, in some cases, electromagnetic interactions between small charged particles are

significant (Griin el al., 1984). Bodies are constrained to obey Newton's laws of motion (relativistic

effects are completely negligible), and inelastic collisions between ring particles can serve as a sink

of kinetic energy. This simple set of interactions has somehow led to apparently different sorts of

ring systems around Jupiter, Saturn, Uranus, and Neptune. A better understanding of what brings

about this complexity and variability may shed light on the evolution of other gravitational systems,

such as our solar system as a whole and our galaxy.

1.2 Radio Occultation Studies of the Rings of Jupiter and

Saturn

Theoretical foundation for the study of planetary rings through the technique of radio occultation

was developed initially within the context of the anticipated Voyager occultation by Saturn's rings

(Marouf, 1975; Marouf el al., 1982). Experimental investigation began somewhat inauspiciously

with the non-detection of Jupiter's tenuous ring in the Voyager 1 radio occultation data. The fact

that the ring was not observed was used to place bounds on its optical depth and particle size

distribution (Tyler et al., 1981). Experimental study of rings through radio occultation truly began

with the successful occultation of Voyager 1 by Saturn's rings in 1980 (Tyler et al., 1981; Marouf
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et al., 1982; Marouf and Tyler, 1982; Tyler el al., 1983). Using data from that experiment, a high

resolution map of Saturn's rings was produced (Marouf el al., 1986; Rosen, 1989), ring particle sizes

were inferred (Marouf el al., 1983; Zebker el al., 1983; Zebker el al., 1985) and limits were placed

on the vertical extent of the rings (Marouf and Tyler, 1982; Zebker and Tyler, 1984). By comparing

features in the radio and ultraviolet spectrometer occultations, the orientation of Saturn's pole was

refined (Simpson et al., 1983).

Waves in Saturn's rings induced by the gravitational perturbations of moons have also been an

active area of research. Analysis of wave-like features in the radio occultation data observed in the

Encke Gap (Marouf et al., 1986; Showalter et al., 1986), and the Cassini division (Marouf and Tyler,

1986), pointed to the possible existence of satellites embedded within the ring system. Analysis of

bending waves forced by Saturn's satellite Mimas allowed local ring properties such as surface mass

density and viscosity to be inferred (Gresh et al., 1986). Recently, a previously unidentified wave

feature in Saturn's Ring C was identified as a nodal bending wave due to vertical forcing by Titan,

and is the first such feature ever observed (Rosen and Lissauer, 1988). An exhaustive analysis of

density and bending waves in Saturn's rings (Rosen, 1989) characterized surface mass densities in

many regions of the rings and pointed out differences in ring morphology based on the strength of

the gravitational perturbation there.

1.3 Overview of the Uranian Rings

The Uranian ring system has in the 12 years since its discovery contributed more than its share of

puzzles to ring science. Before the Voyager 2 encounter with the planet in 1986, numerous stellar

occu]tations of the rings were observed from Earth, and nine narrow rings were discovered atld

named (for a pre-Voyager review, see Elliot and Nicholson, 1984). The pre-Voyager rings span the

distance from ,-_40,000 km to _50,000 km from the center of Uranus, and are named, from the

innermost out, Rings 6, 5, 4, c_,/3, _?, 7, 6, and e. Ring e, which on the average spans a distance of

approximately 60 km, is the widest of the Uranian rings, and contains most of the mass of the ring

system. The remaining eight rings vary in average width from about 1 to 10 km. Voyager added

much new information which could not have been obtained from the ground. From images taken by

cameras on-board Voyager, a ring was discovered between Rings 6 and _, and an extended sheet of

low optical depth material throughout the ring system was found (Smith el al., 1986). Occultation

experiments also observed the rings. Two stars, a-Sagittarii and/_-Persei, passed behind the rings as

viewed from Voyager, and the attenuation of the starlight was observed at two wavelengths (0.27#m
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and 0.11/zm) (Lane et al., 1986; Holberg et al., 1987). In addition, the Voyager 2 encounter provided

the first occultation by the Uranian rings at microwave wavelengths (Tyler et al., 1986; Gresh et al.,

1989). Detailed ring profiles at six distinct longitudes were obtained for the first time from these

occultations.

Since their discovery, two major surprises have characterized the Uranian rings. The first is

their extreme narrowness. Random collisions within the ring would be expected to widen the ring

indefinitely. Following their discovery, Goldreich and Tremaine (1979a) hypothesized that so-called

"shepherd" satellites could exert a torque on the ring particles to prevent their radial spreading.

This theory was dramatically supported by the discovery in 1980 of two shepherd satellites orbiting

just inside and outside of Saturn's narrow Ring F (Smith el al., 1981). It was expected that a

number of shepherd satellites would be found similarly bracketing the narrow Uranian rings.

The second major surprise was the discovery that many of the rings are both eccentric and inclined

to the equatorial plane (Elliot et al., 1977; French e_ al., 1982). Ring e is by far the most eccentric

ring yet observed in the solar system, with an eccentricity of-v 1%. Prior to these observations, it had

been believed that planetary rings would always be approximately circular, because the precession

rate of a satellite (such as a ring particle) around an oblate planet is a function of the semimajor axis

of the orbit. Therefore, ring particles in an eccentric orbit would precess faster than neighboring

particles slightly further from the planet. The resulting collisions would tend to circularize the ring.

The observation of clearly eccentric rings resulted in a scramble to find a mechanism which could

counteract the differential precession. Not long after the discovery of the Uranian rings, Goldreich

and Tremaine (1979b) developed a theory whereby self-gravity between the ring particles supplied

the necessary force to balance the differential precession.

The encounter of Voyager 2 with Uranus presented a great opportunity to test out the theories

of ring dynamics presented to deal with the Uranian rings from afar. As it turned out, the rings

were not quite so well-behaved when viewed close-up. The ring-shepherding theory for confinement

fared relatively well with the discovery of shepherd satellites on each side of Ring c. However, no

other shepherd satellites larger than ,_ 10 km in radius were observed, leaving most of the rings

without an obvious source of confinement. For lack of competitors, self-gravity remains the leading

contender for explaining locked precession, but several serious difficulties with ring masses and the

evolution of profile shape with longitude around the planet were brought to light by results of the

Voyager encounter, and by no means may the problem be considered solved.
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1.4 Radio Occultation of the Uranian Rings

The subject of the present work is the analysis of the Voyager radio occultation observations of

the Uranian rings. The issues discussed above relating to the dynamics of the Uranian rings are

one area open to investigation through analysis of the detailed ring profiles obtained from the radio

occultation data; an equally important area of research is the study of particle sizes and properties.

We have briefly discussed above the differences in particle sizes in the Jovian, Saturnian, Uranian,

and Neptunian ring systems. Strict bounds on particle sizes are necessary for any quantitative

analysis of the causes of particle size differences. For Uranus, the radio occultation data is the best

source for such quantitative information, due to the high signal-to-noise ratio of the measurements,

the dual wavelength nature of the experiment, and the wavelength match to particle sizes exceeding

,v 1 cm. Thus ring profiles and their relation to dynamics, and dual-wavelength observations and

their implications for particle sizes are the two cornerstones of the research topics addressed ill this

work,

The following chapters are organized as follows. Chapter 2 contains a description of the radio

occultation experiment, including relevant aspects of the occultation geometry, characteristics of the

radio system, and a description of the observables of the experiment. This chapter also discusses the

sequence of data reduction steps necessary to produce the final data set. The original data must be

corrected for frequency drift and antenna gain variability and then converted from samples in time

to samples in radial distance from the planet center.

Chapter 3 begins with a description of the final stage of data reduction, in which the data are

processed to compensate for the effects of diffraction through an inverse Fresnel filtering operation.

For the Uranian rings, it was necessary to extend the diffraction-reconstruction procedures developed

for Saturn's rings (Marouf et al., 1986) to allow for reconstruction of elliptical rings. We pres¢_nt

the high resolution (50 m) profiles of the nine Uranian rings, and discuss the implications for ring

structure and its variation with observation longitude. We then use the high-resohltion profiles

to investigate two dynamical problems. A method for determining eccentricity gradients of three

Uranian rings is developed, and results are compared to the self-gravity predictions, leading to the

conclusion that this theory for uniform precession is not entirely correct. Locations for possible

unseen shepherd moons are inferred from the radial location of observed abrupt ring edges.

Chapter 4 presents a collective analysis of the 3.6 and 13 cm wavelength observations, including

dual-wavelength estimates of integrated optical depths and phase delay for all nine rings. These
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measurements may be used to constrain the microscopic properties of the rings--that is, ring thick-

ness and particle sizes, assuming a model for the interaction of radio waves with rings. We begin

with a summary of Mie theory for scattering by a single homogeneous, spherical, dielectric particle

and illustrate how individual particles of different size and refractive index affect the incident wave.

Then we describe three models for scattering by ensembles of such particles: the monolayer model,

in which all the ring particles lie in a plane, the many-particle-thick model, in which the ring is

many particle diameters in vertical extent, and a third model, developed by Zebker et al. (1985),

which is a hybrid of these two. Each of these models assumes that the scattering behavior of a

particle in the ensemble is not coherently affected by the presence of other particles nearby. We

use these models along with the measurements to investigate the implications for ring thickness and

discuss the interpretation of the radio occultation measurements in light of the standard theories

for determining ring particle sizes. Finally, we discuss some problems in the analysis of the dual-

wavelength data, such as possible non-sphericity of the particles and possible coherent interactions

between neighboring particles.

Chapter 5 deals with the issue of coherent interparticle interactions. An analytical theory for

analyzing the scattering behavior of two spherical particles is described, and representative com-

putations that illustrate coherent coupling effects as a function of particle size and separation are

presented. In the second part of the chapter, a "pairwise approximation" is developed for extending

the two particle results to an ensemble of particles, and its validity is checked against exact com-

putations for finite clusters of spheres. The pairwise approximation is then used to investigate the

problem of extinction by a monolayer of particles as a function of increasing packing fraction and

results are compared to the standard non-interacting models. Implications for the interpretation of

the Uranian ring measurements are also discussed.

Finally, Chapter 6 summarizes the conclusions that can be drawn about the Uranian rings

through use of the radio occultation measurements. Important open questions and directions for

future work are discussed.

Appendix A consolidates the equations for noise power, and consequently uncertainty intervals,

as a function of radial resolution. For completeness, Appendix B presents dual-wavelength profiles of

rings not specifically discussed in Chapter 4. Appendix C details the procedures we use to construct

an eccentricity gradient profile from the observations.
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1.5 Contributions

Specific contributions of this research are as follows:

1. Extension of the diffraction-reconstruction procedures initially developed for circular rings

(Marouf et al., 1986) to eccentric rings, allowing high resolution (50 m) reconstruction of

Uranian rings (Gresh et al., 1989), and characterization of salient features of these profiles.

2. Development of procedures to determine eccentricity gradients of Uranian Rings _, /3, and c

based solely on the radio occultation observations. The findings bring into question current

theoretical models for observed rigid precession of these rings.

3. Identification of two possible unseen shepherd satellites, each responsible for simultaneously

confining three or more sharp ring edges.

4. Analysis of dual-wavelength observations of all nine rings and comparison with the predic-

tions of theoretical models. Placement of bounds on the particle size distributions which are

consistent with the radio measurements of Ring e.

5. Placement of constraints on vertical ring structure and physical ring thickness and formulation

of a new model of Ring _ in which ring thickness may vary with azimuth in inverse proportion

to ring width.

6. Analysis of the problem of coherent extinction by a pair of identical spheres and character-

ization of the results as a function of particle size, particle separation, and pair orientation

relative to the incident wave.

7. Development of the pairwise approximation for calculating coherent extinction by an ensemble

of identical particles. Application to the problem of coherent extinction by a closely packed

monolayer distribution of particles and characterization of the results as a function of packing

fraction and incidence angle.

8. Analysis of bending waves in Saturn's rings, leading to estimates of wave height profile, surface

mass density, and viscosity in Ring A wave regions. (This analysis is not discussed in this work;

see Gresh et al. (1986) for details.)
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Chapter 2

Description of the Experiment

and Data Reduction Procedures

Before interpretation of the data may begin, it is necessary to describe the salient characteristics of

the experiment itself. This chapter discusses the relevant aspects of the occultation geometry, the

observables of the experiment, and the data processing procedures. Much of the discussion to follow

was originally presented in Gresh et al. (1989).

2.1 Occultation Geometry

Figure 2 shows the geometry of the Voyager occultation.by the Uranian ring system. Note that

at the time of the Voyager encounter the mean ring plane was almost orthogonal to the radio

path (ring opening angle B = 81.5°). Figure 2 also shows that the occultation track resulted in two

complete profiles of the ring system, separated -_ 141-1490 in longitude. Overall, the geometry for the

Uranian ring occultation was highly favorable for this experiment (See Table 1 for relevant geometric

parameters). First, the radial velocity of the occultation ray in the ring plane was a relatively slow

8.2 km-sec -1 at both ingress and egress. A slow intercept velocity allows longer integration time

per unit distance in the ring plane, and therefore yields a better signal-to-noise ratio. Second,

because the rings were almost fully open, the radio path length through the rings was not increased

significantly by projection effects, resulting in high signal levels even in large optical depth regions,

although this also resulted in a reduced sensitivity to optically thin portions of the rings. The

ll
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Uranus

Occultation Track

Egress Ingress

FIG. 2: View from Earth of Voyager radio occultation geometry. The spacecraft passed behind the

rings and planet as viewed from Earth, resulting in two complete sets of ring occultations. The grey

circles represent the null-to-null antenna beam "footprint" at the ring plane, with the inner and
outer circles representing the 3.6 and 13 cm signals, respectively. The ascending node of Uranus'

equator on the Earth's mean equator of 1950.0 is a convenient reference for longitude, and is denoted

by f_.

large ring opening was fortuitous, given the particularly large optical depths of the Uranian rings.

Finally, the Fresnel scale at Uranus was 1.6-2.3 km at wavelength ,X = 3.6 cm, allowing high spatial

resolution in the reconstruction of initially diffraction-limited observations. This combination of

conditions has allowed reconstruction of ring optical depth profiles with acceptable noise levels to

resolutions as fine as 50 m; the reconstruction has been performed at even finer resolution (20 m)

for study of selected features.

2.2 Radio System Configuration

The radio occultation experiment used the Ultra-Stable Oscillator on board Voyager as a reference

frequency standard for the emitted radio signal (typical short term stability "2_2-5 x 10 -12 over 1 sec;

Eshleman et aL, 1977). Two harmonically-related, right-circularly-polarized signals at wavelengths of

12
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Assumed pole of Uranus a

Angle of ring opening, B

Location of Receiving antenna

(Canberra, Australia)

Frequency and Wavelength

Elevation angle of receiving antenna

Light-time, Voyager 2 to Earth (sec)

Azimuth b (deg)

Radial Velocity (km-sec -2)

Distance c (105 kin)

Fresnel Scale F d (km)
= 3.560 cm

= 13.054 cm

a: 76.59690 6:15.1117 °

81.50

lat: -35.22092 ° long: -148.98128 °

f0 = 8420430456.1 Hz, _ = 3.560 cm (X-Band)
f0 = 2296481033.5 Hz, _ = 13.054 cm (S-Band)

Ingress Egress
77-75 ° 59-550

9890.7 9890.5

344.6-341.1 199.7-196.0

(-) 8.2-8.1 8.2-8.3
1.4-1.6 2.8-2.9

1.6-1.7 2.2-2.3
3.0-3.2 4.3-4.4

TABLE 1: Selected geometric and operating parameters (Additional details may be found in Table 1

of Gresh et al., 1989).

a: Right ascension, a, and declination 6 are from French et al. (1988).

b: Measured in the direction of particle motion (prograde) in the ring plane from the ascending node

of the ring on the Earth's mean equator of 1950.0 to the occultation track.

c: Distance from the spacecraft to the equatorial plane along the line-of-sight.

d: Defined by Eq. (6) of Marouf et al. (1986).

13
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approximately 3.6 and 13 cm were transmitted simultaneously. The co-polarized signal components

were received on Earth at three stations. Both the 3.6 and 13 cm signals were received at the 64 m

NASA Deep Space Network antenna in Canberra, Australia. In addition, the 13 cm signal was

received at a 34 m antenna in Canberra, and the 3.6 cm signal was received at the Parkes Radio

Astronomy Observatory 64 m antenna, also in Australia. Results presented here use the data from

the 64 m Canberra antenna exclusively except where otherwise noted. The free-space signal-to-noise

ratios in a 1 Hz bandwidth (SNR0) for these signals were approximately 46 and 32 dB for the 3.6

and 13 cm data, respectively 1. On the ground, the station frequency reference sources were atomic

clocks, so the spacecraft source is the limiting element for frequency stability.

2.3 Observables

The received signal can be decomposed into coherent and scattered components. The cohe_rent

signal is the coherent sum of the transmitted sinusoidal wave and the individual scattered waves for

particles very close to the line of sight. The result is a wave which, relative to the original wave, is

reduced in amplitude and delayed or advanced in phase by its interaction with ring material. The

scattered signal is the incoherent superposition of all waves scattered in the direction of the Earth

by ring particles illuminated by the spacecraft antenna.

Both the amplitude and the relative phase of the coherent signal are measured accurately by this

experiment. The radio occultation experiment measures E¢, which is the complex field strength of

the coherent received signal. After correction for diffraction effects, the normal optical depth v and

coherent phase Ce may be calculated from

Ec/Eo = Xn + iXs = exp[-r/2/_0 +i¢¢]

where #0 = sin(B) is the ring opening projection, E0 is the value of the field strength in the absence

of rings and (XR, XI) is the normalized complex signal amplitude. Thus optical depth r is a measure

of the reduction in signal amplitude by the ring, while ¢¢ represents the change from the phase of

the signal in free space; a positive value indicates phase retardation, a negative value phase advance.

Additive noise limitations on measurements of r and ¢c can be estimated from results in Ap-

pendix A. At 1 km resolution, for example, SNR0 = 46 dB implies a 1-a detection threshold of

r __ 0.02 and ¢c -_ 3.5 × 10 -3 cycles. It also implies a SNR of better than 10 dB for rings of

1SNR in dB is defined as lOloglo(Ps/P1_), where Ps is the signal power and PN is the noise power in a specified
bandwidth.
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opacity r < 6. The availability of such a broad dynamic range for measurement of 7- has proven

indispensable for observing both the tenuous and optically thick features that typify several of the

Uranian rings.

Waves scattered by a ring can be distinguished from the coherent wave by a shift in frequency of

the scattered signals. This frequency change is a Doppler effect introduced by the relative motion

of the spacecraft and the ring particles. In cases where the spacecraft orbit is otherwise largely

unconstrained, as was the case for the Voyager 1 ring occultation at Saturn, it is possible to optimize

the geometry so that ring particles at a constant radius from the center of the planet scatter at

approximately the same Doppler shift. This facilitates detection by concentrating the signal scattered

by any individual ring feature into a narrow portion of the spectrum (Marouf et al., 1982; Marouf

el al., 1983). In the Saturn occultation experiment, the observed scattered signal was used to infer

the shape of the forward diffraction lobe of the rings large particles, which allowed, through direct

inversion, recovery of the rings' particle size distribution (Marouf et al., 1983; Zebker et al., 1985).

No such trajectory optimization took place at Uranus, as flyby conditions were constrained by the

gravity assist required to encounter Neptune; consequently, the signal from an individual ring was

spread into a large bandwidth (_ 3 kHz). Furthermore, because the Uranian rings are physically

narrow, the surface area available for scattering is small. For these reasons, the scattered signal

was expected to be approximately 20 dB below the noise level. Surprisingly, a strong "anomalous"

scattered signal was actually observed in the neighborhood of Ring e. This signal component is not

discussed further in this work (see, however, Tyler el al., 1986; Gresh et al., 1989).

2.4 Reduction of Observations

The radio signals which are received on the ground must go through a series of processing stages

to prepare them for analysis. These stages include the removal of non-ring-related frequency vari-

ations, correction for antenna pointing errors, conversion from samples equally spaced in time to

samples equally spaced in distance from Uranus, and most importantly, reconstruction of the initially

diffraction-limited profiles of the rings.

The analog signals received at the Earth stations were first heterodyned to baseband frequency,

sampled, and quantized for recording on magnetic tape. Original data bandwidths of 25 kHz and

40 kHz for the Canberra and Parkes data, respectively, are much larger than the spectral width

containing information relevant to diffraction reconstruction procedures, so several stages of filtering

were undertaken to reduce the bandwidth.
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CHAPTER 2. EXPERIMENTAL PROCEDURES

Frequency offsets due to Doppler shifts from the relative motion of the Earth and spacecraft

and special and general relativistic effects in the gravitational fields of Uranus and the Sun were

removed to a level of approximately 0.1 Hz by digitally "steering" (that is, compensating) the

data (Tyler el al., 1983; Tyler, 1987). Correction for the effects just listed is referred to as first-

order steering. Remaining residual drifts, presumably caused by reference oscillator instabilities,

the medium through which the signals propagate (which includes the interplanetary medium and

Earth's atmosphere), and residual errors in the spacecraft trajectory, are removed in two more stages

of steering. In the first of these, a polynomial is fit to the phase in clear regions between the rings

and the polynomial is subtracted from the signal phase. This is termed second-order steering. The

slowly varying component of the residual frequency error can be removed in a final stage, third-order

steering, by taking advantage of the sparse nature of the Uranian rings to estimate the residual long

term ( > 3 sac) phase variations and eliminate them. This is accomplished empirically by dividing

the data by a unit-magnitude low-pass filtered version of itself, the filtering chosen so that ring-

related frequency changes are not affected. The residual phase fluctuations after filtering behave like

a zero mean random process with peak value not exceeding about 10 millicycles. Because we are

able to remove essentially all the effects of the interplanetary medium and the reference frequency

instabilities, very high resolution diffraction correction is possible (see Figure 11, Marouf et al.,

1986). Note that amplitude variations, such as might be caused by a broad tenuous ring, are not

affected by this procedure. Given the phase-steered data set, further reduction in bandwidth may

take place, depending on the desired radial resolution of the final data set and on the geometrical

mapping of time sampling to radius sampling.

While the original data are sampled uniformly in time, efficient reconstruction of the diffraction-

limited profile requires that the data samples be spaced uniformly in radial distance from the planet in

the ring plane. An interpolation step is required to change from time to radius sampling. Before this

step, we apply a continuously-varying anti-aliasing filter to the data to ensure that the interpolation

stage does not anywhere undersample the data.

Uncertainties in orientation of the ring plane translate directly into uncertainties in the radial

location assigned to a given time sample. However, as the incidence direction for the radio occulta-

tion geometry at Uranus was almost orthogonal to the mean ring plane, the intersection radius in

this experiment is relatively insensitive to small errors in pole direction. In particular, the ingress

geometry is highly insensitive to overall changes in pole direction, thereby allowing calculation of
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2.4. REDUCTION OF OBSERVATIONS

an extremely accurate radial scale. French et al. (1988) estimate the 1-a uncertainty in the right-

ascension (a) and declination ($) of the pole to be 0.06 mrad, which implies a maximum error in

radial location for our data from this source of less than 300 m. As a result, the primary source of

uncertainty in the radial scale is due to timing uncertainty in Voyager's trajectory.

Presently, there is no formal a posleriori estimate of the uncertainty in the Voyager trajectory

solution. There are strong indications that the level of error is a few kilometers, or perhaps 1-2

km l-or. First, a priori estimates indicate that, given the quantity and quality of tracking data

obtained, the uncertainties would be of the order of 1 km (Van Allen et al., 1982). Examination

of the Doppler tracking residuals indicates that the solution obtained is of the quality expected, so

the a priori estimates are believed to be valid (Gray, 1988). Second, the atmospheric occultation of

Uranus, which took place in the interval between the two periods of ring occultation, is consistent

with a trajectory uncertainty of a few kilometers (Lindal et al., 1987). Finally, combining the radio

occultation with Earth-based stellar occultations and Voyager PPS 2 and UVS 3 stellar occultations

results in a solution for ring particle orbits which is consistent at the level of approximately 1 km

(French el al., 1988). On the basis of these considerations we adopt an uncertainty of 1 km (1-_r) as

the probable uncertainty in the radial location of the rings as derived for the data here.

Errors in radial scale resulting from the assumption that the rings lie in the equatorial plane can

amount to several kilometers (French, 1987). Several of the rings are known to exhibit small but

significant inclination with respect to the mean plane (French et al., 1982; Smith et al., 1986; French

el al., 1988); that is, individual ring planes are each defined by a slightly different normal. In the

data considered here, each ring was processed individually using the pole orientation appropriate

for that ring; the right ascension C_r and declination 6r of individual ring normals (or poles) used

are given in Table 2. Errors in the radial scale due to uncertainty in the orientation of the line of

nodes and in the inclination of the ring imply errors of 150 m or less, even for tile most inclined

rings. Also included in Table 2 are the semimajor axis a and eccentricity e for each ring as given m

French et al. (1988); these are used in the reconstruction bf the diffraction-limited observations as

described below.

A final step in the preliminary data reduction corrected the signal amplitude for fluctuations

introduced by known variations in pointing of the spacecraft and ground antennas. The spacecraft

pointing was reconstructed by the Voyager Spacecraft Team at the Jet Propulsion Laboratory, while

the ground pointing was calculated through modeling by personnel of the Deep Space Network.

2 Photopolaxhneter, _ = 0.27_m

3Ultraviolet Spectrometer, A = 0.1litre
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Ring a e x 103 i

(km) (deg)
6 41837.15 1.013 0.0616

5 42234.82 1.899 0.0536

4 42570.91 1.059 0.0323

44718.45 0.761 0.0152

45661.03 0.442 0.0051

47175.91 (0.004) 0.0011

7 47626.87 0.109 0.0015
6 48300.12 0.004 0.0011

e 51149.32 7.936 0.0002

Ingress

O_r b 6r b

(deg) (deg)
76.6587 15.0964

76.5426 15.1004

76.5764 15.0862

76.5940 15.1266

76.5937 15.1158

76.5980 15.1116

76.5964 15.1103

76.5958 15.1118

76.5970 15.1119

_r

(deg)

Egress

6r

(deg)
76.6586

76.5426

76.5763

76.5941

76.5937

76.5980

76.5964

76.5958

76.5970

15.0961

15.1007

15.0863

15.1267

15.1158

15.1116

15.1103

15.1118
15.1119

TABLE 2: Elements of Keplerian ring orbits used in processing a

a: Adapted from Table XIV of French et al. (1988). (a, e, and i denote, respectively, semimajor axis,

eccentricity, and inclination).

b: Because of varying inclination of individual rings, profile reconstruction with accurate radial scale

requires specification of a different ring plane normal (or pole) for each ring. ar and 6r denote right

ascension and declination of individual poles used in processing.

Both systematic and random signal fluctuations persist in the corrected data, most likely due to

unmodeled errors in ground antenna pointing. The random fluctuations have characteristic spatial

scales of ,,,500-5000 km (time scale --_ 1-10 minutes) and maximum fluctuations in optical depth r __

0.05 (--_ 0.2 dB signal power). The magnitude of the fluctuations is comparable to the fluctuations

due to signal-to-noise limitations at 1 km resolution, and their persistence over relatively long periods

of time degrades our ability to detect very broad (_500 km wide) tenuous rings; they are much less

significant for the detection of narrower tenuous features ( <_ 100 km wide), as demonstrated below.

2.5 Discussion

The experimental conditions and the data processing procedures for preliminary processing of the

raw radio data have been described above. The next two chapters will detail the way in which the

raw data are further processed and analyzed to infer a wide range of structural, dynamical, and

physical properties of the rings. Conceptually, this work is divided fairly neatly into two areas, and

the following two chapters follow this natural division.

Chapter 3 is concerned with the overall structure and dynamics of the Uranian rings. In order

to accomplish this study, it is necessary to have high resolution profiles with which to work. First
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2.5. DISCUSSION

we describe the diffraction-correction procedures, particularly the alterations which were made to

standard procedures to allow high resolution reconstruction of the significantly eccentric Uranian

rings. The result of this reconstruction is a set of high resolution (50 m) profiles which serve as the

basis of further study of ring structure and dynamics in the ensuing sections of the chapter.

Chapter 4 is concerned with the ways in which the radio occultation data may be applied to

determine the "microscopic" properties of the Uranian rings. In that chapter we present dual-

wavelength optical depth and phase delay profiles, and show how they can be used to infer physical

properties of the rings, such as ring thickness and particle size distributions.
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Chapter 3

High-Resolution Profiles and

Implications for Structure and

Dynamics

In Chapter 2 we briefly described the experimental conditions and the data reduction procedures.

The result of this preliminary processing of the data is a diffraction-limited set of amplitude and

phase measurements. The resolution is on the order of the Fresnel scale--a few kilometers for

tile geometry at Uranus (see Table 1). Since eight of the Uranian rings are only a few to several

kilometers wide, this would seriously limit our ability to study the structure and dynamics of these

rings. However, preservation of phase information in this experinaent allows for reconstruction of

the diffraction-limited observations to achieve resolutions much finer than the Fresnel scale.

In this chapter we briefly review the diffraction-correction procedures, which were initially devel-

oped for the locally almost-circular Saturnian rings (Marouf et al., 1986), and describe the changes

made to the procedures in order to reconstruct the significantly elliptical Uranian rings. Then, we

present the reconstructed high-resolution profiles and describe qualitatively the appearance of the

rings, and the variation in ring structure between the two observation azimuths. In addition, we

present quantitative measures of ring location, ring width, and edge sharpness.

The reconstructed radio occultation profiles have implications for dynamical problems associated

with the rings. As discussed briefly in Chapter 1, the significant eccentricity of many of the Uranian

rings presented theoreticians with a problem: How can the eccentricity of a ring be maintained
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despite differential precession of individual streamlines around an oblate planet? In Section 3.5, we

derive an eccentricity gradient from the two observed ring profiles, and compare it to that implied by

the current leading theory for maintaining uniform ring precession, finding significant discrepancies.

A second problem which may be addressed with the aid of the high resolution profiles is the

issue of ring confinement. Voyager 2 observed two shepherd satellites bracketing Ring e. It is clear

that these satellites are associated with the confinement of this ring, and most likely also confine

the outer edges of Rings 7 and _ (Porco and Goldreich, 1987). However, the failure of Voyager to

detect any other shepherd satellites leaves the confinement of most of the ring edges unexplained,

despite the fact that many of these edges are sharp, indicative of a confinement mechanism at work.

In Section 3.6 we discuss the results of a search for possible locations of satellites too small to be

seen by the Voyager cameras.

3.1 Reconstruction of Diffraction-Limited Observations

The original procedures for diffraction reconstruction were developed by Marouf et al. (1986) for the

Saturnian rings. The preservation of the phase of the diffracted wave allows removal of diffraction

effects, resulting in radial resolution much finer than the Fresnel scale. This has been crucial in

studying many dynamical problems in both Saturn's and Uranus' rings. Following Marouf et al.

(1986), we begin with a summary description of the procedure for circular rings, and then indicate

the modifications necessary for the eccentric Uranian rings.

Voyager transmitted a nearly pure monochromatic wave which passed through the rings and was

later received on Earth. In the absence of noise, one observes a profile of transmittance 7_(p0, ¢0),

where (P0,¢0) is the radius and azimuthal position angle with respect to the planet of the ring

intercept point (see Figure 1 in Marouf et al. for geometry). The ring intercept point is the

intersection of the ray from Voyager to Earth with the ring plane, and may be calculated from

knowledge of the positions of Voyager, Uranus, and Earth as described in Rosen (1989), Appendix B.

The transmittance 7_ is the normalized amplitude and phase of the diffracted received signal. What

we wish to find is the actual ring transmittance T, which would be the amplitude and phase of the

wave observed just beyond the ring plane. 7_ and T are related through Huygens' principle as:

2_- oo

-- 7 (p0,¢0) = 7X IRe-
0 0

papd¢, (1)
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3.1. RECONSTRUCTION OF DIFFRACTION-LIMITED OBSERVATIONS

where p0 = sin(B), B is the ring opening, A is the observation wavelength, Rc is the vector from

the planet to the spacecraft, and the phase ¢ is given by

¢(p0,¢0;P,¢) =kD Ix/1 + 2_-F 7-(1 -F_)],

where

D = IRe - Pol and k = 27r/A.

= cos B(po cos ¢0 - Pcos ¢)

77= [p2o+ p2 _ 2;po cos(¢ - ¢0)]/D 2,

Under the assumption of azimuthal symmetry, T(p, ¢) = T(p), and Eq. 1 simplifies to

oo 2_r

#o [ dp / e{O(P°'¢°;P'¢) de. (2)_(p0, ¢0) = i:_ j ;T(p) l-he- -_1
0 0

The ¢ integral may be evaluated by the stationary phase method (Marouf el al., 1986). The resulting

one-dimensional integral may then be inverted, and as a result T(p) may be determined. In reality,

one recovers the normalized complex amplitude X - Xn + iXz = T + n, where n is the additive

noise contribution.

The improvement achieved from such reconstruction is best illustrated by an example. Figure 3

shows both measured and reconstructed (resolution = 50 m) opacity and phase shift profiles of Ring 6

at egress. Disregarding the phase information, the nearly symmetric diffraction-limited r profile is

highly suggestive of a classical diffraction pattern of an opaque narrow strip, a model usually used

to interpret Earth-based observations of the rings (v., e.g., French el al., 1988). With the phase

information considered, however, the reconstruction reveals a highly asymmetric ring profile with

significant structure across its __ 3 km width.

The reconstruction procedures described above assume the rings to be at least locally circularly

symmetric, with the center of the circle coincident with the center of the planet. This assumption

was approximately met for the Saturnian rings for which these procedures were developed, but does

not hold for at least six of the Uranian rings (6, 5, 4, a, fl, and e), all of which exhibit small but

measurable eccentricity (e _ 5 x 10 -4 to 8 × 10-3; French el al., 1988). Eccentricities of this order

affect profile reconstruction at resolutions <_ 200 m; characteristic signs of poor "focussing" include

overshoots of free-space signal levels or ringing near some sharp edges.

The significant eccentricity of the Uranian rings prompted us to modify the diffraction-reconstruction

procedures to allow the highest possible resolution reconstruction of the ring profiles. All of the
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Fro. 3: Diffraction reconstruction of Ring 6 egress profile. Top two panels are the initial diffrac-

tion-limited optical depth and phase profiles; bottom panels are the corresponding profiles recon-

structed at 50 m resolution. Note the marked asymmetry of the reconstructed opacity profile despite

an apparently symmetric opacity diffraction pattern.
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profiles discussed in this work have been reconstructed using the eccentric ring algorithm. The

modifications are as follows: Consider a ring for which T is constant not along a fixed radius as for

a circular ring, but rather along some set of contours p = f(¢). In particular, we consider elliptical

contours of the form

p = a(1 - e2)I(1 + ecos(¢-w)), (3)

assumed to be parameterized by the semimajor axis a. The eccentricity e and angle of periapse ,_

are assumed constant; ¢ -w denotes the true anomaly z.

Note that in Eq. 3 every point (p, ¢) in the ring plane is associated with a unique ellipse. There-

fore, the transmittance T(p, ¢) may be written as

7
T(p, ¢) = T(a) =- I 6[a - a']T(a')da', (4)

where _[-] is the Dirac delta function and the lower limit of the integral is for mathematical conve-

nience. Substituting Eq. 4 in Eq. 1, one obtains

r 2_ _ ei¢(00,¢0;p,¢) ]T(po,¢o) = -_/_° da'T(a') [ f / ,[a-a'] i-_-Z- _ pdpd¢
Vo _o

The LLfunction in the integrand may be used to reduce the double integral over p and ¢ to a single

integral along the contour C along which (p, ¢) satisfies Eq. 3 for a = a I. The result is

j_+oo / e_(p°'_°;p'¢) dlILo da'T(a') (5-)

c

where dl is an element of length along C and _'a _ denotes the two-dimensional gradient of a' with

respect to p and ¢.

To evaluate the integral along C, we use the method of stationary phase to search along the

contour C for the pair (p,,¢,) such that

Neglecting the effect of eccentricity on d2¢/d¢ 2 at ¢ = ¢,, we obtain

1True anomaly is the angular distance in the orbit plane from periapsis, measured in the direction of motion.

Periapsls is the point on the orbit closest to the planet. For future reference, apoapsis is the point on the orbit

farthest from the planet.
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T(p0, ¢0)-" __12F-il f T(p,)ei¢(po,¢o;p.,,,)dp, ' (7)

--OO

where we have replaced a* by the radius pt at which the contour C intersects the occultation track

and F denotes the Fresnel scale defined by Eq. 6 of Marouf el al. (1986). Eq. 7 differs from

the corresponding equation for a circular ring (Eq. 5 of Marouf et al., 1986) only in the different

stationary phase point, hence procedures previously developed to reconstruct T from observed

can also be used here.

To illustrate, Figure 4a shows a simulated diffraction pattern generated using Voyager's occulta-

tion geometry and assuming an opaque, elliptical, knife-edge that has eccentricity and radial location

coincident with the outer edge of Ring e at ingress. Figure 4b shows a 20 m resolution reconstructed

profile of the "data" in Figure 4a, assuming the incorrect, circular-ring model. The reconstruction

greatly sharpens the diffraction-limited edge, but a slow rise followed by oscillations is noticable

at a much finer scale. The substantial improvement in the reconstructed profile when the correct,

elliptical-ring model is used is clearly evident in Figure 4c, where a "clean" transition occurs over

the (20 m) extent of a resolution element (note the expansion of scale of Figures 4b and 4c). In

comparison, Figure 5 shows the results of applying these reconstruction models to actual observa-

tions. Similar improvement is also evident in Figure 5c. A small but persistent residual overshoot

in Figure 5c indicates that umnodeled perturbations in the assumed Keplerian ellipse model of the

outer edge of Ring e may persist.

3.2 High Resolution Profiles

Above, we have described the way in which the raw radio occultation data have been processed to

remove the effects of diffraction and significantly improve the radial resolution of the data. This step

was critical in order to proceed with analysis of the structure and dynamics of the rings, as almost

all of the structure was masked by diffraction. Due to approximately 14 dB higher signal-to-noise

ratio of the 3.6 cm data relative to the 13 cm data, this analysis was performed only for the shorter

wavelength. However, as we shah see in Chapter 4, the 13 cm data are useful in constraining particle

sizes in the rings.

Global profiles of the entire Uranian ring system as observed at 3.6 cm wavelength are presented

in Figure 6. The nine pre-Voyager rings are visible at both ingress and egress. In addition, we detect

the tenuous companions of Rings r] and 5. No other ring features are detectable in the radio data
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FIG. 4: Reconstruction of simulated diffraction by an elliptical, opaque knife-edged ring. Tile
simulated edge has the same eccentricity, semi-major axis and true anomaly as the outer edge

of Ring e as observed by the radio experiment at ingress. Profile (a) is the simulated observed

diffraction pattern. Profile (b) has been reconstructed using a circular-ring model, while profile (c)
is reconstructed using an algorithm that incorporates ring ellipticity (Appendix B). Note the "clean"

transition to free space signal level in the latter case. The two reconstructed profiles (b, c) were

processed to a resolution of 20 m. Note expansion of scale in two lower panels.
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within the limitations of baseline fluctuations and noise. Figures 7-18 show the radio opacity profiles

(optical depth profiles at 3.6 cm wavelength) of the nine rings. The heavy line in these figures is the

50 m resolution profile, and, except for Figures 17 and 18, the lighter line is the 200 m resolution

profile, for which the noise is significantly reduced. For Ring e, the 200 m resolution profiles are

shown separately, in Figure 19.

The high resolution profiles reveal a ring system of remarkable morphological variability which

may be divided into three main groups. Group 1 includes the three outer rings (7, (5, and c), which

are characterized by ring features of unusually large values of optical depth (v > 3). The most

extreme member of this group is Ring 7, which has very sharp edges despite an optical depth at

egress exceeding --_ 6 and a width of only _ 1.6 kin. Rings 7 and e share the distinction of being

the only two rings in the system that exhibit very sharp inner and outer edges at both observation

azimuths. The outer edge of Ring (5 is also sharp, while the inner edge is significantly different in

character, falling almost exponentially towards v = 0 at both radio observation azimuths. Ring (5

is distinguished by the only clearly regular structure observable in the ring system, appearing in

the egress profile (Figure 16) as wave-like fluctuations superposed on the graded inner edge of the

ring. The fluctuations are marginally detectable in the ingress profile. Significant radial structure

characterizes the Ring e egress profile; however, no evidence for wave-like structures is immediately

apparent.

The diffraction reconstruction algorithm for Ring 7 at egress has incorporated a canting angle

of approximately -0.10 from the nominal ellipse. This angle was chosen empirically as discussed

in more detail in Gresh el al. (1989) to remove obvious "ringing" observed near the edges of this

ring. This canting may be indicative of a perturbation of the ring edge by the shepherding satellite

Ophelia, or it may be a result of the viscous instability of the ring which results in a "breathing"

inward and outward motion as discussed by French et al. (1988).

Group 2 includes Rings a and /3. Both are relatively broad and are characterized by diffuse

edges, at least at one observation azimuth. Among the nine rings, Ring /3 has the most diffuse

edges, the smallest overall opacity, and the least distinct radial structure. The Ring a ingress profile

exhibits a diffuse inner edge, with a distinct tenuous feature of opacity r __ 0.25 and width _ 3.5 km.

Remarkably, the inner feature in the egress profile is completely different in nature, appearing as a

nearly detached, relatively dense, and very narrow feature. At this azimuth, both edges of Ring

are relatively sharp, and significant structure is apparent across the ring.
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Group 3 includes the three innermost rings, Rings 6, 5, and 4. All three are characterized by

widths of -_2-3 kilometers, which are small compared to Groups 1 and 2, and moderate optical

depths of order 1-2, which are small compared to Group 1. They all possess an abrupt outer,

quasi-exponential inner edge.

Ring y is somewhat of a puzzle. It is the most "circular" ring among the nine observed. By

location it belongs to Group 1, and shares the circularity property with two other nearly circular

members, Rings 7 and 6. It also shares with Ring 6 the distinction of being one of only two rings

that possess detectable broad tenuous companions (see below). Yet morphologically its -,_1.5 km

width, its near unit opacity, and its edge behavior suggest strong similarities to Group 3 rings (6,

5, and 4). However, while its edge behavior is morphologically similar to Rings 6, 5, 4, and also

6, it is exactly reversed. Indeed, Ring rl is the only ring among the nine observed that exhibits a

sharp inner edge and diffuse, apparently exponentially shaped outer edge. Perhaps Ring _ deserves

a group all by itself, Group 4!

Regardless of designation, significant changes in profile morphology with azimuth are observed

for almost all rings. Five of the six known elliptical rings were occulted by Voyager once close to

periapse. This is remarkable, given the chance nature of such events. In three of these five cases

(_, /3, and e), the near-periapse profiles are narrower and have higher opacity. While significant

longitudinal changes are also evident for the other two rings (6 and 5), the morphology does not

appear to be strongly correlated with true anomaly. Ring 4 was occulted at almost exactly _71 °

from periapse. The observed profile morphology is indeed similar in overall behavior, nonetheless

differences in width and optical depth between the two profiles are evident. The morphology is

very similar to that observed for Ring 5 at 8o from periapse, again pointing to the fact that profile

morphology of Rings 6, 5, and 4 is probably not strongly correlated with true anomaly.

The three nearly circular rings (r/, 7, and 6) also show significant differences with azimuth.

Despite nearly constant width and overall opacity, a striking change in the morphology of Ring

is evident. Rings 7 and 6, on the other hand, behave very much like Ring e, varying in opacity

roughly in inverse proportion to width without significant change in overall morphology. While the

near-periapse Ring 6 profile is indeed more narrow, this is not the case for Ring 7, where the narrow

dense profile is observed 147 ° from periapse.
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FIG. 6: Global ring system profile at 3.6 cm wavelength at 10 km resolution. The nine pre-Voyager

rings are visible at both ingress and egress. Note the increase in __ 1000 km scale free space noise

level for the egress profile relative to ingress. This is due to degradation in spacecraft antenna

pointing accuracy after -_4 hours, during which the spacecraft attitude was controlled by onboard

gyros. Note also the evident eccentricity of Ring e.
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Fro. 7: Opacity profile of Ring 6 observed at 3.6 cm wavelength. Indicated angles correspond to

true anomalies of assumed Keplerian streamline model at location of radio observations. Ingress

and egress profiles are located in top and bottom panels, respectively. Resolution is 50 m. The

second (smoother) curve in each panel is a 200 m resolution profile, offset in (radius in kin, opacity)

by (0,1.5). Uncertainty intervals for this profile, as well as others to follow, are given in Table 11

of Appendix A; for example, the free space standard deviation of optical depth ar is 0.09 at 50 m
resolution.
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Fic. 8: Opacity profile of Ring 5. See caption of Figure 7 for details; offset is (0,1.5) and (-10,1)

for the top and bottom panels, respectively. Note the significant change of profile morphology with

observation longitude and the relatively large opacity level reached at 80 true anomaly.
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Fro. 9: Opacity profile of Ring 4. See caption of Figure 7 for details; offset is (-10,1). A pattern

of sharp outer edge, diffuse quasi-exponentially shaped inner edge characterizes the profile at both

observation longitudes (-_ +710 true anomaly). Similar morphology is also apparent for Ring 5

at 8o (Figure 8) and Ring 6 at 1440 (Figure 7), indicating little correlation of this particular edge

morphology with location from periapse.
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FIG. 10: Opacity profile of Ring _. See caption of Figure 7 for details; offset is (0,1.5) and (-10,1)

for upper and lower panels, respectively. Note in particular the relatively diffuse edges at 124 o

evolving into sharp edges at 3400 , and the interior broad and relatively tenuous feature at 124 o ,
partly evolving into a very narrow, dense, and nearly detached feature at 340 °.
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FIG. 11: Opacity profile of Ring ft. See caption of Figure 7 for details; offset is (0,1.5). Ring fl has
the most diffuse edges, the least opacity, and least prominent radial structure of the Uranian rings.

A notably more diffuse inner edge is apparent at both observation longitudes.
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FIG. 12: Opacity profile of Ring _/. See caption of Figure 7 for details; offset is (0,1.5). This
ring is almost circular (note the radius scale above); true anomalies in parentheses indicate large

uncertainties in location of periapse. Edge behavior at 218 ° is opposite to the characteristic sharp

outer edge-diffuse inner edge observed for several other rings. Not apparent in the profiles here is a

tenuous companion exterior to the ring, shown separately in Figure 20.
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FIG. 13: Opacity profile of Ring 7 (ingress). See caption of Figure 7 for details; offset is (10,1). The

horizontal dashed line identifies the threshold opacity level vrn (r > rTH indicates noise limited

measurement; see Appendix A). Ring 7 is one of two Uranian rings (the other is Ring e) whose

overall morphology is reminiscent of narrow ringlets in Saturn's rings, for which extremely sharp

inner and outer edges are a common feature. Unusually high opacity here is unmatched by any
known feature in Saturn's rings. True anomaly in parentheses indicates nearly circular orbit and

high uncertainty in periapse location.
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FIG. 14: Opacity profile of Ring 7 (egress). See captions of Figures 7 and 13 for details; offset

is (-10,1). As discussed in the text, the reconstruction algorithm for this profile incorporates a

canting angle of-0.1070 . Note that extremely sharp edges are maintained despite an optical depth

exceeding ,-, 6 over a width of about 1.6 km at this longitude. The thickest part of the ring has

opacity exceeding the threshold level at 200 m resolution (VTH _--6.6).
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FIG. 15: Opacity profile of Ring 6 (ingress). See caption of Figure 7 for details; offset is (0,2).

Despite its much larger width, Ring 6 shares with Rings 6, 5, and 4 their distinct sharp-outer

diffuse-inner edge characteristics. A tenuous companion int.erior to the inner edge, shown separately

in Figure 21, is distinguishable in the profile. Ring 6 is nearly circular, so its periapse location is

uncertain; true anomaly in parentheses indicates this fact.

4O



3.2. HIGH RESOLUTION PROFILES

Ring 6 egress

>,,
ii

tO
O3
Q.
O
O
"10
O3
rr
m

o3

E
L_
O

0

2

3

4

5

6

7

5 Km-(336 °)

I I I

48290 Radius (Km) 48315

FIG. 16: Opacity profile of Ring _ (egress). See captions of Figures 7 and 15 for details; offset is

(10,1). Comparison with the ingress profile (Figure 15) shows significant changes with observation

azimuth. Note in particular the wave-like fluctuations superposed on the tapered inner edge, perhaps

the wake of a near-by satellite or a density (or bending) wave driven by a resonance with a more

distant satellite. In the latter case, the fluctuations should also be present in the ingress profile, a

marginal case at best considering the profiles in Figure 15.
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Fro. 17: Opacity profile of Ring e (ingress) observed at 3.6 cm wavelength. Resolution is 50 m.

At 30 ° from periapse, the ring width is __ 22.4 km, close to the ring's minimum width (_ 18 km).

A dense outer core superposed on a relatively less dense (r ,-_ 3) background characterizes the
overall morphology of the ring. Significant small-scale structure within the background medium is

present. Both the dense core and opacity enhancements near the edges fall below the threshold level

TT g _-_5.2 (horizontal dashed line) and are noise limited. Note that both the vertical and horizontal

scales here are more compressed compared to all previous profiles.
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3.3. TENUOUS RING COMPANIONS

See following page.

FIG. 18: Opacity profile of Ring e (egress) See also caption of Figure 17. The radius and opacity

scales for this figure differ from those of previous profiles. The outer core is only moderately dense

at this longitude, so 7- < rTH _--5.2 everywhere. A small, but noticable, free-space level overshoot is

evident at the edges (see also Figure 17) and is probably caused by as yet unmodeled perturbations
in the Keplerian ring orbit model used to remove diffraction.

3.3 Tenuous Ring Companions

Low optical depth companions to Rings r/and 5 (v., e.g., Elliot and Nicholson, 1984) are observed

in the 3.6 em data (Figures 21 and 20). Table 3 gives the estimated locations and widths of these

companion rings. The width of the Ring r/ companion is _ 55 km and its mean optical depth is

-_ 0.03, while the corresponding quantities for Ring 5 are about 10 km and 0.06, respectively. It

appears that both of the companion rings are roughly circular with no obvious differences betwcen

the ingress and egress profiles. Note in particular that the position of the companion to Ring

remains fixed as the shape and width of the main ring change significantly. Therefore the behavior

of the companion ring appears to be controlled separately from that of the main core.
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FIG. 19: Opacity profile of Ring e, at resolution 200 m. Rich structural detail is still clearly evident

at this resolution. Although the opacity threshold level increases to 6.6, compared to 5.2 at 50 m

resolution, the edge and core opacities at ingress (top) remain noise limited. Note the near absence

of edge overshoots at this resolution. To first order, tile background opacity level decreases by about
a factor of three as the ring width increases by about the same factor.
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FIG. 20: Ring rl and its tenuous outer companion observed at ingress and egress at 3.6 cm wave-

length. Resolution is 1 km. Its width (,_ 55 km) and opacity (_ 0.03) are similar for both observation
longitudes, indicating a nearly circular feature. This profile was obtained by combining the data

collected from the Parkes and Canberra antennas as described in Gresh et al. (1989).
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FIG. 21: Ring 6 and its tenuous inner companion observed at ingress and egress at 3.6 cm wavelength.

l_esolution is 200 m. Its width (_ 10 kin) and opacity (-_ 0.06) are nearly identical at the two
observation longitudes.
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Ring Side

q ing

q egr

6 ing

5 egr

Radial Location Width fr(3.6 cm)
Inner Outer W 1 km res a

(km) (km) (km) (km)
47180 47232 52 1.35 4- 0.17

47180 47235 55 2.03 4- 0.18

48284 48295 11 0.64 4- 0.08

48283 48293 10 0.56 + 0.08

Mean Opacity

< r(3.6 cm) >b

0.026 4- 0.003

0.037 4- 0.003

0.058 4- 0.007

0.056 4- 0.O08

TABLE 3: Measured widths and opacities of the tenuous companions of Rings t/and 6.

a: "res" stands for resolution.

': Defined as _ fw r(3.6 cm)

3.4 Edge Characteristics

Table 4 lists the widths of the rings as observed in the radio data. The estimates of edge locations

correspond to the opacity level r = 0.1. Ring width should be accurate to --- 4-50 m for rings with

sharp inner and outer edges and ,_ -4-200 m for rings with one or more diffuse edges.

Table 4 also gives values for peak opacity re reached in the immediate neighborhood of each edge.

For abrupt, deep edges the value of re is well-defined, but for relatively diffuse edges the choice is

more subjective. In all cases, 200 m resolution profiles are used to reduce noise contamination. Note

in particular the unusually large value re > 5, reached at the inner and outer edges of Ring 7 egress

despite a width of only 1.6 km. Comparable r_'s are only reached by both edges of Ring ¢ ingress,

when the ring is nearly at its minimum width.

The last entry of Table 4 gives a measure of relative edge sharpness, taken to be (re -0.1) divided

by the radial distance over which the edge opacity changes from 0.1 to re. The measure is therefore

a typical gradient of the edge profile, which is not necessarily the true gradient near the onset of the

edge. A gradient less than _ 1 r/kin indicates a relatively diffuse edge, while a gradient greater than

--, 10 r/km indicates an extremely sharp edge. Except in a few cases, particularly Ring fl, values in

Table 4 indicate that the Uranian rings are characterized by a gradient > 1 r/km. Furthermore, a

general pattern of outer edges sharper than the inner ones is apparent, with the prominent exception

of the edges of Ring q egress, where this behavior is reversed. In the cases of Rings 7, 6, and e,

edges become less sharp as ring width increases, for some almost in direct proportion. The sharpest

edges appear on Ring 7 egress, Ring _ egress and Ring e ingress. These rings are also the ones with
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True Anom.

(deg)
144.3

2.6

150.0

7.9

71.2

288.9
124.4

340.2

13.9

228.9

4.5

218.3
293.8

147.3

122.5
335.5

30.0

241.2

Width _

W

(km)

Edge Opacity b
Inner Outer

Edge Sharpness c
Inner Outer

(r/km)
1.52

1.72

2.75

2.62

1.95

2.67

10.59
4.22

7.03

11.19

1.54

1.53

3.83

1.63

6.70
2.70

22.43

74.93

1.16 1.16

0.64 0.45

0.49 0.84

1.75 2.40

0.83 1.70

0.64 1.35

0.28 0.86

0.64 1.43

0.27 0.86

0.20 0.31

1.07 0.70

1.08 0.33

1.53 3.20

5.89 7.45

1.01 1.18

2.14 4.60

5.29 5.19
2.50 1.79

1.02 2.17

O.98 1.33

1.14 1.92

1.33 3.85

1.08 4.35

0.33 5.56

0.40 0.70

4.55 3.33

0.25 0.81

0.06 0.85

1.41 3.45

4.76 1.04

5.56 6.67

12.50 14.29

0.38 5.00

1.49 12.50

14.29 16.67

2.63 3.33

TABLE 4: Widths and edge characteristics of observed profiles

a: Uncertainty is --_ -4-50 m for rings with very sharp edges and _ -t-200 m for rings with at least one

diffuse edge.
b: Defined as the peak opacity reached in the immediate neighborhood of the edge, re. It is a well

defined parameter for abrupt opaque edges, otherwise re is somewhat subjective.

c: Defined as (re - 0.1) divided by the radial distance in kilometers over which the edge opacity

increases from 0.1 to re. It represents a characteristic gradient of the opacity profile in the neigh-

borhood of an edge, but not necessarily the gradient at the onset of the edge. Value <_ 1 indicates

a relatively diffuse edge, while a value _> 10 indicates an extremely sharp edge. Abrupt edges are

characterized by values _> 1.
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the largest opacity re. It is interesting to note that the edge sharpness of several ringlets in Saturn's

rings also appears to increase with increasing edge opacity (v., e.g., Cuzzi el al., 1984).

3.5 Eccentricity Gradients of Rings and e

The first dynamical problem we address with the help of the high-resolution profiles is that of

maintenance of eccentricity. In the absence of additional forces, streamlines of ring particles in

eccentric orbits would precess at a rate which depends on their semimajor axis. If w is the location

of the line of apsides 2 of an eccentric orbit with semimajor axis a, then the rate of change of this

location would be given approximately by

dw _ 3 j2R2(GM)I/_a_7/2
dt 2

where M, R, and J_ are the mass, radius, and dynamical oblateness 3 of the planet, and G is the

gravitational constant. Therefore adjacent streamlines with slightly different semimajor axes will

precess at different rates, and collisions will result, leading to circularization of an eccentric ring.

The time scale for disturbances due to differential precession is quite short; for Ring e, the inner

edge of the ring would precess an entire revolution relative to the outer edge in less than 200 years.

Thus, the fact that eccentric rings with locked precession are observed (v., e.g., Elliot and Nicholson,

1984) must be explained by an additional force to counteract differential precession.

Goldreich and Tremaine (1979b) hypothesized that the necessary force was supplied by self-

gravity between ring particles. They developed a method by which, given an observation of one

optical depth profile, and assuming that mass density is proportional to optical depth, one could

determine e(a) such that self-gravity forces balance forces causing the differential precession. This is

accomplished by integrating the gravitational effect of each streamline on each of the other stream-

lines over an entire orbit. For a system of N streamlines, this leads to a set of N equations in

N unknowns which may be solved directly, giving not only the unknown eccentricity of (N - 2)

streamlines (the eccentricity of the inner and outer streamlines are known from observation of the

2The line of apsides is the line connecting the center of the planet to periapsis on the orbit.

3The dynamical oblateness J2 is the coefficient of the second harmonic of the planet's gravitational potential U.

The coefficients Jn are defined by

]V = G._._MM1 - Jn Pn (sin 0)
T

r_m2

where Pn(sinO) is the Legendre polynomial, 0 is defined in a spherical coordinate system, R is the equatorial radius

of the planet, and r is distance from the center of the planet.
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3.5. ECCENTRICITY GRADIENTS OF RINGS a, 13, AND e

ring edges), but also the total mass of the ring and the precession rate of the ring as a whole. We

use this procedure to calculate theoretical eccentricity gradient profiles using only one of the two

observed radio occultation profiles. The result is then tested for self-consistency against the second

observed profile.

Alternatively, we use two observed radio occultation profiles of each ring to derive an eccentricity

gradient profile as follows (Marouf e! al., 1987). First, we estimate the orbital parameters a and e

of the inner edge of a ring by using the two measured inner edge radii, along with the assumption

that the angle of periapse is as given in Table 4. The orbit of the outer edge of the ring is estimated

similarly. (We found it necessary to use this procedure to derive a and e rather than use the values

given in French el al. (1986) because of small but significant differences between predicted and

actual locations of the ring edges.) Then, we use a variation on this basic technique to construct

an eccentricity profile across the entire ring. Given the observation that integrated optical depth

is approximately the same for the two observed profiles (as we shall see in Chapter 4), we define

streamlines as the contours which confine equal amounts of integrated optical depth in tile two

profiles. Assuming that the observed angle of periapse is constant across the ring, tile two radii that

confine the same integrated optical depth are sufficient to determine a and e for each streamline, and

hence an eccentricity profile across the ring. (A more detailed account of the procedure we use may

be found in Appendix C.) Subsequently, we compute numerically the eccentricity gradient profile

q(a), where

de
q-a--.

da

We designate the profile obtained using this technique "self-consistent" if the eccentricity gradient

q remains between 0 and 1, a necessary condition for non-crossing streamlines. This eccentricity

gradient may then be compared to that computed from tile self-gravity theory.

Only Rings a, fl, and c have been analyzed in this way. The reason for this is that they show the

most well-behaved width vs true anomaly behavior, as has been discussed by French el al. (1988).

This indicates that a simple eccentric streamline model is in good agreement with the observed

global behavior of these rings. The inner rings, for example, show no simple relationship between

width and true anomaly, indicating that more complicated perturbations to the streamlines may be

at work. The only other ring which shows potential for a similar analysis is Ring 5, which has been

shown (French et al., 1988) to exhibit a relationship between its width and its phase relative to the

normal mode excited in it. A preliminary analysis along the lines suggested here indicates that the

51



CHAPTER 3. STRUCTURE AND DYNAMICS

streamlines may be perturbed in the region of the putative wave at the inner edge of Ring _ (Marouf

et al., 1988).

Figure 22 shows q vs a for Rings o_, fl, and e. In each panel, the q(a) profile derived from the

empirical method described above and that derived from the self-gravity theory are shown. The solid

curve is the "self-consistent" q profile calculated using 19, 29, and 92 streamlines for Rings a, j3,

and e, respectively; the dashed curve is that obtained by using Goldreich and Tremaine's self-gravity

theory, calculated using 20, 20, and 45 streamlines, respectively. For comparison we also show a

dotted line with a constant value of q, representing the simple model of a linear taper in eccentricity

between observed inner and outer edge values. These "average" values are 0.68, 0.48, and 0.27 for

Rings e, o_, and _, respectively.

The agreement between the two methods is fairly good for Ring a, except perhaps near the

edges. However, as we will discuss below, there are other reasons for doubting the applicability of

the self-gravity theory for this particular ring. For Rings/? and c, there is little agreement between

the two q(a) profiles, casting doubt on the validity of the self-gravity model, at least in its most basic

form used here. Comparison with a more elaborate model which includes collisions between ring

particles (Borderies el al., 1983) has not been attempted; however this model appears to imply that

such collisional forces will result in apse misalignment of the inner and outer edges. There is clear

evidence that the apses of the edges of Ring e are not misaligned (French et al., 1986; French, el

al., 1989), and there is similar, though weaker, evidence that Rings a and/_ are also not misaligned

(French, et al., 1989).

In order to assess the impact of the differences between the q(a) profiles in Figure 22, we have

used the calculated eccentricity gradients to "propagate" a profile observed at one true anomaly

to the true anomaly of the second observed profile. This is accomplished by using the eccentricity

gradient to determine the relative amount of stretch or compression of the streamlines from one true

anomaly to the other (see Appendix C). The stretch or compression results in a decrease or increase,

respectively, of the optical depth at the location of the streamline. The propagated profile is then

compared to the actual observed second profile. For the case of the "self-consistent" eccentricity

gradient, the procedure is guaranteed to give agreement, since the eccentricity was determined from

the two profiles; for the self-gravity case it serves as a test of the validity of the theory.

The result of this procedure for Ring e is shown in Figure 23. The top panel shows the mapping

using the "self-consistent" eccentricity gradient, and as expected, the two profiles follow one another

closely. However, slight differences persist because of a small difference in integrated optical depth
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FIG. 22: Eccentricity gradient profiles for Rings a,/3, and e, derived from empirical "self-consistent"

theory (solid curve), and from self-gravity theory (dashed curve). The dotted curve shows the average
q for the ring for comparison. Agreement between the two methods is fairly good for Ring a, but

significant differences exist for Rings fl and e, indicating weaknesses in the self-gravity determination

of eccentricity.
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(see Chapter 4). The bottom panel shows the result when the egress profile is mapped to the ingress

true anomaly using the self-gravity eccentricity gradient. Significant differences from the actual

observed profile throughout the ring are clearly evident, indicating that the self-gravity theory does

not correctly predict profile evolution with longitude.

As noted above, under the assumptions of the self-gravity theory, the shape of the optical depth

profile of the ring, combined with the gravitational parameters of the central body, yield not only

the eccentricity gradient profile, but also the mass of the ring. This is because the force which

opposes the tendency for differential precession is proportional to the mass of the streamlines. This

mass estimate is derived independently from the average optical depth. For the case of Ring a,

the predicted surface mass density is about 2 g-cm -2 (Goldreich and Porco, 1987). For a ring with

an average optical depth of about unity, this is quite small. For example, in Saturn's Ring A,

with average normal optical depth of about 0.7, the surface mass density has been estimated at

between about 30 and 40 g-cm -2 (v., e.g., Cuzzi el al., 1984). The small surface mass density

per unit optical depth estimate points to small particles, as optical depth increases with the area

of the particle, while mass increases as the volume. However, clear differences between v(3.6 cm)

and v(13 cm) were seen in Saturn's Ring A (indicating a relative abundance of centimeter-sized

particles), while, as we shall see in Chapter 4, no clear difference is seen in Ring (_ (indicating a

relative depletion of centimeter-sized particles). Therefore, the low surface mass density estimate

from the self-gravity theory appears to be inconsistent with the observations. In addition to the

lack of clear differential optical depth between the two radio wavelengths, it has been pointed out

(Goldreich and Porco, 1987) that there is other evidence that the particles in Ring a cannot be as

small as this surface mass density estimate indicates. Uranus has an extremely extended hydrogen

atmosphere, which exists well into the region of the rings (Broadfoot et al., 1986). Estimates of

the drag force of this atmosphere on ring particles indicates that particles smaller than perhaps a

centimeter in size would have a very short lifetime (Goldreich and Porco, 1987). Similar difficulties

are present with the surface mass density estimate for Ring/3 of 1.5 g-cm -2. For Ring e, the drag

problem is less severe both because the hydrogen atmosphere is significantly less dense at the orbit of

Ring e, and because self-gravity predictions for its mass indicate a value of approximately 30 g-cm -2,

implying larger particles. In Chapter 4 we will investigate the mass of Ring e in more detail.

We have shown above that two lines of evidence indicate that problems exist with the self-gravity

theory: the disagreement between observed and predicted eccentricity gradients, and, at least for

Rings a and/3, the fact that the predicted surface mass density is too small, based on both observed
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FIG. 23: Propagation of Ring E egress profile to ingress true anomaly using both the "self-consistent"

(top panel) and the self-gravity (bottom panel) eccentricity gradients. Heavy curve is measured

profile; lighter curve is propagated profile. The agreement between the two profiles in the top

panel is excellent, as is expected given the method of determining this gradient; the bottom panel
shows that the differences in q noted in Figure 22 are significant, as the two profiles show very

poor agreement. The fact that the self-gravity theory, at least in its basic form used here, does

not predict the actual profile evolution with longitude indicates that more work to explain observed

locked precession remains to be done.
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microwave opacities and on calculated drag torques. These results indicate that the self-gravity

theory used here is, at best, incomplete at this time. The empirically derived eccentricity gradients

should serve as an additional constraint on any modifications to the self-gravity theory or alternative

theories proposed to explain the observed locked precession of elliptical rings.

3.6 Search for Shepherd Satellites to Confine the Rings

The second dynamical problem we shall address is the confinement of many of the rings. Of the

nine pre-Voyager Uranian rings, only three have been associated with resonances of known satellites

(Porco and Goldreich, 1987). The encounter of Voyager 2 with Uranus resulted in the discovery

of ten small satellites (Smith et al., 1986), two of which, Cordelia and Ophelia, were found brack-

eting Ring e, just as the shepherding theory of ring confinement (Goldreich and Tremaine, 1979a)

predicted. The inner edge of Ring e is believed to be shepherded by an outer eccentric resonance

(OER) of Cordelia, while the outer edge of Ring e is thought to be shepherded by an inner eccentric

resonance (IER) of Ophelia (Goldreich and Porco, 1987). In addition, the outer edge of Ring/_ has

been associated with an IER of Cordelia, and the ,outer edge of Ring 3' has been associated with

an IER of Ophelia. Perhaps not coincidentally, these edges are among the sharpest in the Uranian

system (Table 4). The other six rings have as yet not been associated with any resonances of any

of the known satellites; yet, as Table 4 shows, many of the edges are quite sharp, indicating that

a confinement mechanism is at work. We hypothesize that perhaps one or more unknown satellites

shepherd these rings, and attempt to find candidate locations for satellites which might shepherd

several edges simultaneously. These satellites would necessarily be quite small in order to explain

why they were not seen in the Voyager images; it has been estimated that the detection threshold

for the Voyager cameras is a satellite approximately 10 km in radius (Smith et al., 1986).

The general resonance condition for rings and satellites in coplanar orbits is (Porco and Goldreich,

1987):

rnn - ate - runs - k_cs = 0 (8)

where m, q, and k are integers (m is a positive integer), n is the mean motion 4 of the ring particle

and _ is the epicyclic frequency of the ring particle s. n, and ns are the corresponding values for the

satellite.

4Mean motion is the average angular velocity of the orbiting particle.

SThe epicycllc frequency is the rate at which the radius of a particle on an eccentric orbit varies from the average

circular orbit. For a spherically symmetric central body, t_ = n; n not equal to n results in apsidal progression.
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The order of the resonance is defined as Ikl + Iql, so first-order resonances have either (k = 0, q =

-4-1) or (q = 0, k = -4-1). First-order resonances are the strongest resonances, since the strength of

the perturbation potential is proportional to elqle, Ikl, where e is the eccentricity of the ring and

e, is the eccentricity of the satellite. The q = 0 resonances are corotation resonances and are not

considered further here.

Let us consider the k = 0 resonances. The resonance condition then becomes

= +re(n, - _).

Given the semimajor axis a of a ring edge, we compute n and n of the ring using the mass of

Uranus given by Tyler el al. (1986) and the gravitational harmonics of Uranus given by French et al.

(1988). We then find the possible satellite positions corresponding to solutions of tile above resonance

condition. We hope to find one satellite at semimajor axis as which has first-order resonances at

several observed ring edge locations.

We have found that generally there are several possible satellite orbits which may shepherd two

rings simultaneously, particularly if the rings are near one another. Therefore, even though the

existence of satellites which shepherd only two ring edges is certainly possible (Cordelia and Ophelia

appear to belong to this category), given the data available it is an ill-defined problem, since there

are usually multiple solutions. For this reason we restrict our attention to possible orbit locations

which have'first-order resonances at the edges of three or more rings. The problem we pose is: If a

given set of three ring edges is confined by resonances with one satellite, where could that satellite

be, if anywhere?

We first consider tile innermost three rings. Rings 6, 5, and 4 share a common morphology of

sharp outer edges and diffuse inner edges (Section 3.2). We hypothesize that the outer edges of these

rings are all shepherded by a single satellite exterior to Ring 4. We compute all possible n_ which

satisfy the resonance condition for all three rings, while also constraining m so that the resonances

are spaced by more than approximately 3 kin, the width of the rings. For the semimajor axis of tile

ring edge, we use the semimajor axis of the middle of the ring (French et al., 1988) and add to it

half the average width of the ring as determined by the radio occultation experiment (Table 4). As

these rings do not show a clear relationship between true anomaly and ring width (French et al.,

1986), this is a reasonable procedure.

We have found that an object orbiting with semimajor axis 42900.8 km would have the first-order

resonances listed in Table 5. However, given the resonance spacing at the locations of these three
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rings (Table 5), the statistical significance of such an event may not be particularly strong, and it is

not possible to make a definitive statement regarding the existence of such a satellite.

We have also found that a satellite orbiting with a semimajor axis of 47166 km (which is --_ 10 km

inside the orbit of the almost-circular Ring 7) would have the first-order resonances as listed in

Table 6. The low order of these resonances, and the associated large resonance spacings (Table 6),

makes this location much more statistically significant. In this case, we find that a single object

could have a first-order resonance 1.6 km outside the outer edge of Ring 4 (7:6), precisely at the

outer edge of Ring ct (13:12), approximately at the mean semimajor axis of Ring fl (21:20), and

approximately 0.6 km outside the inner edge of Ring 3' (68:69). In addition, there is a weaker,

second-order resonance (55:57) excited by such an object which lies within Ring 6 (at --, 48300 kin),

and may be associated with the wavelike feature observed there (Marouf et al., 1988). If in fact such

a satellite is confining these rings, one would expect the resonance locations to be precisely at the

outer edges of Rings 4, a, and 8, and precisely at the inner edge of Ring 3'. However, uncertainties in

the actual ring locations are on the order of 1 km (French el al., 1988), and the details of ring width

variations are not well understood for many of the rings. As an example of typical residuals for

known resonances in the Uranian rings, the predicted locations of the viscous instablity resonances

for Rings 7 and 6 differ by ,,_0.5-1 km from the actual ring positions, and the differences between

the shepherding resonance locations for Ring e and the actual position of its edges are _ 0.5 km

(French et al., 1988). Thus the residual errors reported here are somewhat, but not grossly, larger

than those already observed in the system.

We now investigate whether a satellite small enough to have been missed in the ring satellite

search by Voyager would be large enough to confine these rings. For shepherding to take place, the

gravitational torque applied by the satellite must exceed the viscous torque of the ring 6. Goldreich

and Poreo (1987) discuss the shepherding mechanism for the Uranian rings, and point out that any

torque large enough to shepherd a ring edge nmst necessarily result in non-linear perturbations to the

ring particle streamlines. The "critical" torque Terit, at which the perturbations become non-linear,

is given approximately by (Goldreich and Porco, 1987)

_21T3n2a8

Tcrit - 6Mu2 , (9)

where a is the surface mass density of the ring, n and a are the mean motion and semimajor axis of

the ring orbit, and Mu is the mass of Uranus.

Viscous torque is the collisional dissipation of energy which results in ring spreading.

58



3.6. SEARCH FOR SHEPHERD SATELLITES TO CONFINE THE RINGS

(m + k) : (m - q) Resonance Spacing Rea Ring Mean Outer Edge

k --- O, q = -t-1 (kin) (km) (km)

27:26 40 41838.4 41838.0 (6)

43:42 16 42235.2 42236.1 (5)

87:86 4 42572.5 42572.1 (4)

TABLE 5: First-order resonances of a satellite at semimajor axis 42900.8 kin. The estimated error

in ring position is approximately 1 km based on residual trajectory uncertainty. However an error
in trajectory would be expected to offset all rings in the same direction by approximately the same
amount. There is additional uncertainty in the location of the edge of the ring due to the lack

of understanding of how the width of the ring changes with azimuth. The widths of these rings

change by up to about 25% (less than 1 kin) from the ingress to egress measurements of the radio

occultation experiment (Table 4).

_R_ is the eccentric resonance location.

(m + k) : (m - q)
k =0, q=-4-1

Resonance Spacing

(kin)
7:6 > 600

13:12 200

21:20 70

68:69 7

Re Ring Edge

(kin) (knO
42573.7 42572.1 (4, outer)

44722.0 44722.1 (_, outer)

45660.6 45665.0 (_, outer)

47626.1 47625.5 (7, inner)

TABLE 6: First-order resonances of a satellite at semimajor axis 47166.0 kin. Edge locations for

Rings 4 and 7 are determined using the same procedure as described in the text for Rings 6, 5 and

4; edges for Rings ct and fl are determined by fitting ellipses to the measured inner and outer edges

of these rings in the radio data. Note the very large resonance spacings, indicating high statistical

significance for this possible satellite location.
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The applied nonlinear torque T,_z is given by

3.7mMso-2n_a 6

T.t M}j ' (10)

where Ms is the mass of the shepherding satellite and m is azimuthal number of the resonance, from

Eq. 8. Since T,_t must exceed Yerit, we may combine Eqs. 9 and 10 to obtain

g < 2.25raMs
a 2

The maximum mass of the satellite may be approximately computed by assuming that any

satellite larger than approximately 10 km in radius would have been detected in the Voyager images

(Smith ei al., 1986), and assuming a density for the satellite equal to that of the other Uranian

satellites, 1.4 g-cm -3 (Tyler et al., 1986). We thus obtain Ms <_ 6 × 10 is g. Using the semimajor

axes of the rings given in Table 2, and the values for m given in Table 6, we find that

a(Ring 4) <_ 5.2 g-cm -2

a(Ring (_) < 8.8 g-cm -2

or(Ring/3) <_ 13.6 g-era -2

c_(Ring 7) < 40.5 g-cm -2

These maximum values for the surface mass density for Rings 4, a, and/3 are somewhat small,

given the relatively large microwave opacities observed at both the 3.6 and 13 cm wavelengths.

ttowever, these bounds are highly sensitive both to the value chosen for the maximum radius of the

satellite, and to the details of the viscosity model used. An upper limit on the size of the satellite

of 15 km rather than 10 km would increase the maximum values of a by more than a factor of

three. We note that the smallest objects actually seen by the Voyager cameras at Uranus were

,-, 20 km in radius (Smith el al., 1986). Of course, given the estimated location for this possible

shepherding satellite of only --, 10 km inside the edge of Ring r/, we are hypothesizing a situation

where the shepherding satellite is essentially bumped up against, or actually within the ring. Under

such circumstances we would expect to see severe perturbations of Ring r/ along the lines of the

"braided" Ring F of Saturn. However, no such perturbations are seen. We note that, as theoretical

modeling of viscosity in planetary rings is still an active area of research, bounds on surface mass

density based on the models considered here may be subject to change as a better understanding of

this mechanism is reached.
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We may also investigate what perturbations such an object might excite on the edges of the

rings it confines. A shepherding satellite will produce a wavy edge, with the number of wavelengths

along the circumference equal to the m-number of the resonance. The amplitude of the disturbance

depends on the mass of the satellite and the distance of the satellite from the ring as (Freedman el

al., 1983):

iAr[ ,_ 3 km (M10__g)( a, ) 3 (120__kmX} 2- 50,000 km a, - a /

where as is the semimajor axis of the satellite. This equation implies that for Rings 4, a, and/3, the

perturbations would be only a few meters, far below the possibility for detection. For Ring 7, the

perturbation would be on the order of 70 m, which given the current level of understanding of the

orbit of this ring (French el al., 1988), would also not be detectable.

3.7 Summary and Discussion

In this chapter, we described the diffraction-reconstruction procedures used to improve the resolution

of initially diffraction-limited raw data by more than an order of magnitude. Extension of the

algorithm to handle the significantly eccentric Uranian rings was also described.

We discussed qualitatively the appearance of the rings and how they vary from one observation

azimuth to the other. Many edges were observed to be quite sharp; however there is tendency

for outer edges to be sharper than inner edges, indicating a possible difference in the confinement

mechanism for the two edges.

We then described the way in which the fine-resolution profiles may be used to investigate two

dynamical problems. In the first, we used two observed profiles for each of Rings ct, /3, and ¢ to

construct empirically an eccentricity gradient profile q(a) for these rings. The results were then

compared to the predictions of the self-gravity theory for uniform ring precession. We found that

for Rings e and/3 the empirical q(a) profiles did not agree well with those predicted. This result is

one indication that problems exist with the self-gravity theory, at least in its basic form used here.

The small surface mass densities predicted by the theory for Rings o_and/3 are likewise inconsistent

with both the microwave opacities observed and with the large drag torque exerted on the rings by

the hydrogen atmosphere.

The second ring dynamics problem addressed was that of ring confinement. High resolution

profiles of the rings show that many ring edges are quite sharp, indicating a confining force. Although

satellites were found to shepherd both edges of Ring e, and the outer edges of Rings 7 and a, the
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confinement mechanism of all of the other edges remain unknown at this time. We hypothesized

that satellites too small to be seen by the Voyager cameras are in fact shepherding these edges, and

found two locations where a satellite might confine at least three rings. The more significant of the

two, near Ring rl, could simultaneously shepherd four edges with low order resonances. The torque

which would be available from such a small, unseen, satellite appears to be roughly sufficient to

shepherd these four rings. However, one would expect significant disturbance to Ring '1 due to its

proximity to such a satellite, and such disturbance is not observed. Unfortunately, the calculated

perturbations to the edges of Kings 4, a, _, and 7 are too smMl to be detectable in the current set

of observations, so confirmation of such a location would be difficult.
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Chapter 4

Differential Measurements and

Implications for Physical

Properties

In the previous chapter, we discussed the application of the radio occultation measurenlents to

problems of ring structure and dynamics, including maintenance of eccentricity and ring confinement.

Because the 13 cm wavelength signal has approximately 14 dB lower signal-to-noise than tile 3.6 cm

signal, high resolution reconstruction of detailed ring structure (Chapter 3) is possible only for

the shorter wavelength. However, reconstructed coarse-resolution profiles at the longer-wavelength

contribute significantly to study of the particle sizes in the rings, as we demonstrate below.

In this chapter, we discuss the dual-wavelength data and present measurements of integrated

optical depth and phase delay. To reduce noise in the 13 cm data, we consider profiles at 500 m

resolution. The measurements are then used to constrain physical properties of the rings, such as

ring thickness and particle sizes. We present a short summary of three models for the interaction

of radio waves with rings, in all three cases starting from Mie theory for scattering by a sphere.

Then, these models are used to investigate the problem of ring thickness, where we show that the

measurements are consistent with a many-particle-thick model whose vertical thickness is either

constant or varies inversely with ring width. Finally, we discuss ways in which the dual-wavelength

measurements may be used to constrain the particle size distributions, and in addition, point out
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some difficulties in the interpretation of the measurements, due presumably to a breakdown of the

assumptions of standard radiowave-ring interaction models.

4.1 Differential Measurements

As described in Chapter 2, the radio occultation experiment provides observations of both r and ¢_

at A = 3.6 and 13 cm. The two wavelengths are coherently derived from Voyager's onboard Ultra-

Stable Oscillator and are harmonically related by the exact ratio 3/11. In principle, the experiment

yields four independent profiles: r(3.6 cm), r(13 cm), ¢¢(3.6 cm), and ¢¢(13 cm). Phase fluctuations

due to oscillator instabilities can be essentially removed if differential phase

A¢_ _ ¢_(13 cm)-- 3¢_(3.6 cm)

is considered instead of individual absolute phases.

Because of lower transmitted power, and lower antenna gain both on Voyager and on the ground,

the observed free-space value of SNR0 at 13 em wavelength was smaller than that at 3.6 cm by

approximately 14 dB (_ 32 vs ,_ 46 dB). This large difference causes r(13 em) and ¢_(13 cm) to be

significantly noiser at the same resolution. At 50 m resolution, for example, the free-space standard

deviation in measured optical depth aT(13 cm) _ 0.45, compared to aT(3.6 cm) __ 0.09. (Further

discussion of noise characteristics may be found in Appendix A.) Profiles at 13 em therefore require

significant resolution degradation to reduce _rT(13 cm) to useful levels. For this reason, we compare

dual-wavelength measurements at 500 m resolution, for which aT in free-space is approximately

3 x 10 -2 and 14 × 10 -_ at 3.6 and 13 cm, respectively. The corresponding uncertainty in the phase

measurement, ace, is equal to 1.8 x 10 -2 cycles for the 13 cm data, and 3.6 x 10 -3 cycles for the

3.6 cm data.

Here we discuss specifically two representative example profiles at 3.6 and 13 cm. (For complete-

ness, ingress and egress profiles of all nine rings are presented in Appendix B.) The five inner rings

(6, 5, 4, c_, and/3) are exemplified by the Ring c_ ingress profile, shown in Figure 24. In this figure,

the top panel shows normal optical depth r at both 3.6 and 13 cm, and the bottom panel shows

the coherent phase delay for both wavelengths. The most obvious characteristic of the five inner

rings is the large phase delay at 13 cm compared to the nearly absent phase delay at 3.6 cm. Note

in particular how the shape of the 13 cm phase delay for Ring a closely mimics the shape of the

observed optical depth profile at 3.6 cm. The large phase delay at 13 cm wavelength has been one of

the most intriguing results of the Uranus ring occultation data, as it is very difficult to produce such
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a large differential phase effect given the lack of evidence for a corresponding differential opacity as

indicated in the top panel of Figure 24. This subject will be pursued further below. The four outer

rings (Rings r/, 7, 6, and e), are exemplified by the Ring e egress profile shown in Figure 25. Little

or no phase delay at either wavelength is evident in this case. Within the noise limitations, little

or no difference in normal optical depth is detectable for any of the nine rings, with the possible

exception of Ring/3 (see Figure 87, Appendix B).

We summarize in Table 7 results for integrated (or averaged) optical depth and phase shift.

Values for Rings r/ and 6 are for the main cores of these rings, as the SNR of the 13 cm data is

too low to allow meaningful comparison with tile 3.6 cm data for their tenuous companion rings.

Individual uncertainties (_ 1-(7) were computed using previously published procedures (Marouf et

al., 1986) summarized in Appendix A, assuming SNR0 _ 46 and 32 dB at 3.6 and 13 cm, respectively.

Comparison of the magnitude of the uncertainties in columns 2 and 3 of Table 7 clearly shows the

effect of the 14 dB difference. Also given in columns 4 and 5 of Table 7 are the integrated differential

opacity, f At, normalized by the ring width W and by f r(3.6 cm) respectively, where

Av ----v(3.6 cm) -- r(13 cm).

The average differential opacity < Ar >-- f Av/W is also plotted in Figure 26a, where, for

all rings, the uncertainty intervals either include or are close to the < Ar >= 0 level. For rings

with dense features (v comparable to rTH(13 cm) 1 "_ 4.3 at 500 m resolution), a reliable estimate

of < Ar > is precluded, resulting in large uncertainty intervals. Figure 26a strongly suggests

< Av >--" 0 for all cases that are not masked by noise. Nonetheless, within the noise limitations,

Table 7 indicates that for the narrow rings (6, 5, 4, q, and _ ingress), _20-40% differential opacity

could go undetected. For the relatively wider o_,/3, and _ egress cases, this limit is _ 15%. For Ring

e egress, the integrated differential opacity is less than _ 3%. Because of regions of optical depth

exceeding rTH, no reliable integrated differential opacity measurement is possible for Ring c ingress

or for Ring 7.

The last column in Table 7 gives the average integrated differential phase shift <A¢¢ >=

(l/W) f[¢¢(13 cm) - 1_¢c(3.6 cm)], normalized by < r(3.6 cm) >. Because it is an effect per unit

optical depth, its value may be directly compared among the rings (Marouf et al., 1982). This is

accomplished in Figure 26b. The measurements of this quantity divide the rings into two distinct

groups. The first includes the five inner rings (6, 5, 4, c_, and/3) which have < A¢_ > / < 7-(3.6 cm) >

1 The threshold opacity "rTH is the smallest ring opacity for which the confidence interval includes _" = c_o. See

Appendix A for further discussion of noise in the radio occultation data.
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Ring ingress: 124°
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FIG. 24: Opacity and phase profiles of Ring (_ observed at ingress. ¢_ is measured in cycles.

Angle indicated at the top is true anomaly. Heavy curve is "the 3.6 cm wavelength, lighter curve is

the 13 cm wavelength. The 13 cm curve is significantly noiser due to lower transmitter power as

well as smaller antenna gain for the longer wavelength. Within the measurement error, there is no
detectable difference between the optical depths at 3.6 and 13 cm. The phase delay at 13 cm is

particularly clear for this ring, and significantly exceeds its value at 3.6 cm. Note how the phase
behavior closely mimics the shape of the optical depth curve, clearly indicating that the phase delay

is related to the amount of material present in the ring. Discussion of noise limitations may be found

in Appendix A; for 500 m resolution, in free space, _T(13 cm) ___1.4 x 10 -1, at(3.6 cm) _ 3 x 10 -2,

a¢c(13 cm) _ 1.8 x 10 -2 cycles, and cr¢c(3.6 cm) -_ 3.6 x 10 -3 cycles.
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Ring _ egress: 241 °
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FIG. 25: Opacity and phase profiles of Ring c observed at egress. See caption of Figure 24 for
details. Due to the large width and relatively small optical depth of this ring, measurements here

concerning differential optical depth and phase delay have the smallest inherent noise limitations.

The top panel clearly shows how tile optical depth profiles at the two wavelengths closely follow

each other throughout the ring. This is an indication of relative depletion of decimeter and smaller

size particles. The bottom panel shows little phase delay at either wavelength, though there is some

bias for the 13 cm signal towards phase retardation in the inner region of the ring. This bias shows
up in the positive, albeit small, phase retardation measurement in Table 7.
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0.10 ± 0.06

0.25 4. 0.22

0.14 4. 0.22

-0 55 +0.35
• -oo

0 77 +°95
• -oo

-0.06 4. 0.11
Ci Aq+ 027

--v.-L,-,_ 0.45

0.55 4. oo

0.01 ± 0.04

10 ± 13

-5 4. 15

04.15

27 + 16

39 ± 34

24 ± 37
_2,2+ 14

--oo

19+23
--00

-8 ± 14
9_+17

13+oo

14.3

45±9

60 i 10

704. 11

75 ± 12

-17 4. 23

-3 4. 28

31 4. 29

9±39
12 4. 10

274. 17

-2 ± 10

84.2

TABLE 7: Total and differential integrated opacity and phase delay measured at 3.6 and 13 cm

wavelengths. In all cases, resolution is 500 m.
a: The brackets < > denote average value computed by integrating over the width of the ring W

and dividing by W. Ar -- r(3.6 cm) - r(13 cm).

b: ACe -- ¢c(13 cm) - 3¢_(3.6 cm).
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FIG. 26: (a) Average differential opacity observed for each of the nine Uranian rings, shown

approximately to scale in distance from the planet. The average is computed by integrating

Ar = r(3.6 cm) - r(13 cm) over the width of the ring W, and dividing the result by W. The

left (squares) and right (circles) symbols for each pair correspond to ingress and egress values, re-

spectively. In all cases, the 1-a uncertainty interval either includes or is close to zero. The large

uncertainty in some cases is caused by features of opacity exceeding the threshold. (b) Average

differential phase delay ACe - ¢c(13 cm) - 36_(3.6 cm), per unit average 3.6 cm opacity. Tile
measurements clearly divide the rings into two distinct groups according to distance from Uranus.

Numerical values corresponding to points shown in both (a) and (b) are given in Table 7.
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CHAPTER 4. PHYSICAL PROPERTIES

40-75 × 10 -3 cycles/unit optical depth. Dispersion is much less noticable among the second group

(_/, 7, 6, and e), where its value is near zero, in the range -17 to 31 × 10 -3 cycles/unit optical depth.

Combined, the above differential opacity and differential phase measurements have important

implications for ring particle sizes and the manner in which ring particles are distributed in space.

These implications are examined at length in subsequent sections. To relate the observations to

physical ring properties, however, we first need to introduce a physical model for the interaction

between radio waves and ring particles. A brief summary of three such models is given in the next

section and the results are subsequently used to interpret the differential observations above.

4.2 Interaction of Radio Waves with Rings

We start with a description of the extinction behavior of a single particle, and then extend the

description to extinction by an ensemble of such particles. In the literature there are three models

for the distribution of particles in space that are relevant to planetary rings. The first is a monolayer,

in which all the particles lie in a single layer, and are equally illuminated by the incident radiation

(although Dones e_ al. (1988) proposed a model in which shadowing at grazing incidence is included).

The second is the many-particle-thick model, in which the particles lie in a cloud-like layer which is

many particle diameters in thickness. In this model, particles deep within the layer are illuminated by

a wave which has been attenuated due to passage through the layer. Bridging these two extremes is

a third model, the "thin layer model" proposed by Zebker et al. (1985) for features in Saturn's rings,

where a layer is a few particles thick. It is important to point out that all of these models assume

noncoherent-interactions among the particles. However, it is intuitively clear that this assumption

must break down if tile packing fraction is not small and hence the particles are close to one another.

Extension of the formulation to account for such coherent interactions is attempted in Chapter 5.

All of our numerical computations below are based on the assumption of scattering by nearly-

spherical particles. Although approximations to the exact scattering behavior of an arbitrarily-

shaped particle exist in the limit of particles very small compared to the incident wavelength

(Rayleigh scattering) and in the limit of particles very large compared to the wavelength (geo-

metric optics), these approximations are in general not very useful in the context of scattering of

microwave radiation by ring particles. Particles in the rings are often of a size comparable to the

radio wavelength. Under these circumstances, an alternative method is required. A very useful

theoretical development in electromagnetic scattering theory is the exact solution of the problem

of scattering by a sphere of arbitrary size and refractive index. Gustav Mie (Mie, 1908) is usually
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4.2. INTERACTION OF RADIO WAVES WITH RINGS

credited with the solution of this problem, and the mathematical formulation is usually referred to

as Mie theory (see, however, Kerker, 1969, p. 4).

4.2.1 Extinction by a single particle

Consider first what measurable effect a single particle has on a plane wave incident along the z-axis

(see Figure 27 for geometry). We adopt notation similar to that of Bohren and Htlffman (1983), and

assume a time variation of the complex field of tile form e -i_°t.2 The amplitude scattering matrix S

is defined as follows:

where k = 2,'r/t and Eli i and Exi are the electric field components of the incident wave parallel to,

and perpendicular to, respectively, the scattering plane (the plane containing both the incident waw_

propagation direction and the direction from the. particle to the point at which ttle scattered field

is observed). Rib and Exs are the corresponding electric field components of tile scattered field.

The distance from the scatterer to the observation point is r and the projection of this vector onto

the direction of the original ray' is z; thus tile phase difference between the incident wave and the

scattered wave is k(r - z). The matrix S describes the scattered field components in terlns of the

observation angles and scatterer properties only. For the special case of near-spherical scatterers

observed in the near-forward direction, depolarization effects may be neglected; that is, Sa "" $4 "" 0

and S j_(0) _'=-SII(0) _ S(0), where the scattering angle 0 (Figure 27) is small (sin 0 __ 0). In this case,

the direction of the electric fie]d vector is essentially unaffected by the scattering, and the amplitude

of the near-forward field scattered by, the object toward the point (x, y) in tile observing plane is

eik(r-z)

E, = E,

Following an approach similar to that of van de Hulst (1981, p. 30), we assume that x and y are

much smaller than z, approximate r - z ill the exponent as (x 2 + y2)/2z, and replace r by z in the

denominator. Then the total field amplitude may be written as

s(o)E=Ei+E,=Ei l+_. ],

where Ei is the incident field and E, is the scattered field. The fact that z is large implies that the

second term in the parentheses is small. Therefore, the intensity may be written as

2w is angular frequency and t is time.
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Scattering Plane

X TTyTTy,nc,°entwave
FIG. 27: Geometry for scattering by a single scatterer. The incident plane wave is along the z

axis, and the total field is observed in the near-forward direction. The observation plane (z, y) is

a distance z from the origin, assumed to be located within the scatterer. The distance from the

origin to the observation point is r. The scattering plane is defined as the plane containing both the
incident wave direction and the scattered wave direction.

where Re{.} signifies the real part of the quantity inside the braces, '.... indicates complex conjugate,

and 1i = EiE_. The difference I - Ii may be integrated over the entire area of the observing plane

to find the change in power due to the presence of the scatterer. The x and y integrals are evaluated

by the stationary phase method. The result is

jj (I - Ii)dx dy = -_--_Re{S(0)}Ii,

72



4.2. INTERACTION OF RADIO WAVES WITH RINGS

where S(0) = S(0 = 0) is the exact forward scattering amplitude. The object has removed a total

power of Ce×tIi from the incident plane wave (hence the negative sign), where Cext is the extinction

cross-section defined as

4_"
Cext _-- _l_e{S(0)}.

In the preceeding derivation, tile integration over x and y was extended to infinity, despite the

earlier assumption that 0 is small and hence x and y are much smaller than z. The validity of the

derivation follows from the fact that strong interference between the incident and scattered wave is

primarily confined to a region close to the exact forward direction. As x and y increase, the please

of the scattered wave oscillates rapidly, and the net interference effect contributed from the region

beyond the first few Fresnel zones quickly becomes negligible. Therefore, the small 0 requirement

implies that v"_/z must be small that is, z :>> A, a condition which is easily met in ring occultation

experiments.

Extinction by a spherical particle

For the particular case of a sphere of radius a we may normalize the extinction cross-section defined

above by the geometric cross section 7ra2 to obtain the extinction efficiency QMie:

4
{_Mie -- l_,e{S(O) }.

(h'_a)_

We also define the phase-shift efficiency /)Mie analogously as

(12)

-2

PMi_- (_hn{S(O)},__ (13)

where Ira{.} indicates the imaginary part of the term inside the braces. It will be shown subsequently

that PMie controls the phase shift introduced by an assembly of such particles; the sign is chosen

so that a positive Pgi_ represents phase retardation. The factor of two difference between Eqs. 12

and 13 results in symmetric equations for optical depth and phase delay for the many-particle-thick

model of a ring, as we shall see below. These terms are generally referred to as Qext and PCxt in the

literature, but we use QMie and PMi_ to distinguish them from other extinction efficiencies, defined

in later chapters.

Bohren and Huffman (1983) show that QMi_ may be expressed as

O,3

2 _(2n-t- 1)Re{a, +b,_} (14)
l_)Mi e -- (]¢a)2

rl._l
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where {a,} and {b_] are the classical Mie coefficients, which may be computed numerically given

the electric size ka, and the refractive index of the particle, m, relative to that of the medium in

which the particle is embedded (v., e.g., Dave, 1968). Similarly,

oo

1 E(2n + 1)Im(a,, + b,_} (15)
PMie-- (ka) 2

r_----1

The behavior of QMie and PMie as a function of a, A, and m may now be illustrated. Figure 28

shows both QMie and PMie for the wavelengths used in this experiment, plotted vs the radius of tile

particle in centimeters. The top panel assumes a lossless refractive index rn = (1.78 + 0.00i); the

bottom panel assumes a very lossy material with refractive index m = (1.70 + 0.70 0. The reasons

for choosing these particular values are discussed later, in Section 4.4.1.

In the Rayleigh region (a < 1 cm for the 3.6 cm extinction curves), QMie increases very rapidly

with increasing particle radius (QMie (x (ka) 4) for the case where there is no absorption (top panel

of Figure 28), while PMie increases much less rapidly (PMie (x ka). This behavior is also evident

from the small argument limit of the Mie coefficients, where

al

bl -

a 2 ,_

b2

-i2(ka) 3 m2 - 1 i2(ka)5 (_n2- 2)(m_ + 1)
3 m 2 + 2 - 5 (m 2 + 2) 2

i(ka)5
45 (m2 -- 1) + O[(ka) 7]

i(ka) 5 m 2 - 1 + o[(k_) 7]
15 2m _ + 3

o[(k_)_].

+ -___ 2 + O[(ka)7]

To order (ka) 6, and assuming m is purely real,

QMie (no absorption) "_ 8(ka)-----_4( m2 - 1"_2
- 3 \m 2 + 2] '

thus the a4A -4 dependence of QMie in this case. However, if there is sufficient loss in the particle

(i.e., Im{rn} # 0) such that absorption dominates extinction, then the leading term in QMie is

Qgie (with absorption) __ 4(ka)Im m2_ 2 '

and QMi_ will vary as aA -1. This drastic difference in the behavior of QMie is clearly visible in

Figure 28.

Similarly, it is clear that, regardless of loss in the particle, the leading term in PMie iS the first

term of al, so that

eMio_- 2(k_)Re _ T2
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0

m=1.78+0.00i QMie(13 cm) a

C

"_ .
U_I

(_ ! I _ _ IIIII I I I I111
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b

m----1.70+0.70i QMie(13 cm)

QMie(3.6 c_

=o
f: _"_ X_ Mie(13 crn)=x

o///,.,.,,.6 I/
0 III1 I I I I I PI

0.1 1 10

sphere radius (cm)

FIG. 28: Extinction curves for a sphere as obtained from Mie theory. The top panel assumes a lossless

refractive index, while the bottom panel assumes a very lossy material. For clarity, the PMie(13 cin)

curve has been omitted from the top panel, but the behavior would mimic PMie(3.6 cm), shifted to

larger size particles as is demonstrated by the PMi_ curves in the lower panel. In the bottom panel,
phase retardation is indicated by a solid line, phase advance by a dashed line.
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and hence PlvIie _ a/_ -1 in both Figures 28a and b. A positive PMie is to be interpreted as phase

retardation.

Consider now the behavior of PMie and QMie as the particle becomes very large. In the limit of

a >> )_, @Mie _ 2 and PMie falls off approximately as a -1 and is negative, implying a phase advance.

For the lossless refractive index, PMi_ oscillates between positive and negative values, but on the

average is mostly negative. The asymptotic approach of QMie to the value of 2 can be explained as a

combination of two components. The portion directly intercepted by the particle is either scattered

or absorbed, contributing a value of ,-_ 1 to @Mie. The remaining portion of QMie comes from

diffraction around the edge of the particle, and propagates at a slight angle to the exact forward

direction. Depending on the conditions of an occultation experiment, this portion of the diffracted

energy may or may not be collected as part of the forward scattered energy. For the case of the

radio occultation experiment, almost all of the near-forward diffracted energy is separated from the

forward propagating wave by a Doppler shift (Marouf et al., 1982), and the observed extinction

efficiency does approach a limiting value of 2 as ka becomes large. Further discussion of conditions

under which asymptotic vMues of extinction efficiency other than 2 might be observed may be found

in Cuzzi (1985) and Holberg et al. (1987).

Between the asymptotic behavior of the extinction curves at large and small particle size lim-

its, the behavior of QMie and PMie is more complex, particularly in the case with no absorption.

Considering the QMie curves of Figure 28a in the size range a _> A, we see that there are oscilla-

tions about the value of 2, with a superimposed ripple structure of higher frequency. The lower

frequency oscillations may be interpreted as an interference effect between the wave which passes

directly through the particle and the incident wave. The period of these oscillations is approximately

Aa = A/(Re{rn} - 1). The higher frequency oscillations are due to resonant poles in the Mie coeffi-

cients a,, and b,_. The ripple structure is not particularly relevant for our purposes, since absorption,

non-sphericity, or a distribution of particle sizes will smooth the high frequency oscillations. The

lower frequency interference fringes also become less significant if loss is added to the refractive index

(as in Figure 28b), or if a sufficiently broad distribution of particle sizes is assumed.

The important characteristics of scattering by spheres which are relevant to future discussions

of the results of the radio occultation experiment are the following:

1. For lossless, small particles, PMi_ is much larger than QMie, and has a positive sign, (i.e., phase

is retarded relative to the original wave, as shown below).
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2. For such small particles,

QMie(3.6 cm) __ (11/3)4QMi¢(13 cm)

as the ratio of the radio occultation wavelengths is exactly 11/3. For small lossy particles, oll

the other hand,

QM e(3.6cm) (11/3)QM o(13cm).

For both lossy and lossless small particles

PMie(3.6 cm) _-- (ll/3)PMie(13 cm).

3. As the size of the particle becomes much larger than )_, QMie approaches a limiting value of 2.

The approach is slow, however, and differences between QM_¢(3.6 cm) and QMie(13 era) persist

for a as large as _ 1 m, as may be seen in Figure 28b.

4. There are only two ways in which QM_¢(3.6 cm) can approximately equal QM_e(13 era). The

first is if a > 1 m; the second is if a happens to fall close to a crossing point of the QMie curves.

For a particle with loss (Figure 28b) or for a broad size distribution of particles (as will be

shown below), there is only one such crossing point, at a __ few centimeters (the exact value

is dependent on the refractive index m). For a monodispersion of lossless particles, there are

a number of such crossing points (Figure 28a).

Below, we extend the above results to describe the scattering behavior of a collection of spheres,

an assumed model of planetary rings. The three vertical distributions we shall consider are the

monolayer, thin-layer, and many-particle-thick models. In all three, it is assumed that each particle

scatters independently of its neighbors. This assunlption is critically examined later, in Chapter 5.

A common rule of thumb is that the area or volume fraction occupied by the particles must be

smaller than about 1% for coherent interactions between the particles to be negligible.

4.2.2 The monolayer model

The first model we consider is the monolayer model, in which the centers of all the particles are

assumed to lie in a plane, as schematically depicted in Figure 29. The field observed at point

P(0, 0, z) is a superposition of the incident field Ei and the fields scattered from each particle in the

layer. Coherent addition of these fields will be limited to particles within the first few Fresnel zones.

As before, over such an "active region," 0 ,-_ X/_f+ y2/z "_ Vf_/z is very small if z/,_ :>> 1 and one
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© ©

.P

FIG. 29: Geometry of scattering by a monolayer for normal incidence. The observation point is at

P, located a distance z from the monolayer. Particles in the layer are at a point (x, y) from the

origin (in the layer) and at a distance r from the observation point. For z _ X, 9 is small and

r _ z + (x 2 + y2)/2z. The observed field is the superposition of scattered fields from each particle
in the layer.

may neglect polarization effects. For small 0, r __ z + _2z , and the field at P due to a particle at

(x, y) is therefore approximately given by

eik(x2+y2)/2z

E, - -ikz S(O)Ei.

The total field at P is the incident field plus the sum of all contributions from the scattering region:

E:E,(l÷_-_S(O)__ze'_(_+_)/2z ) .

Assuming that there are a sufficient number of particles in the active region to justify replacing

the summation with an integral, we obtain

E = E, (l + J/ S(O)n-_ze"(_2+v')/2" dxdy ) ,

where n is the number of particles per unit ring area, or area density for short. Evaluating the

integrals using the stationary phase method, the result for the total field is

E-- E_ (1- _nS(O)) , (16)
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where S(O) = S(O = 0). Introducing a particle size distribution n(a) and making the substitution

4S(0) = (ka)2[QMie - 2iPMie], the intensity ratio 1/h - IEIUIE_I2 reduces to

/ ] mf0°_ _(a)da __i = 1 - -_ _ra2 (QMie - 2iPMi_) . (17)

Note that, under the condition that the area packing fraction n(a)Tra 2 is small, this implies

I 1 7ra2QMien(a) da,
Ii

so that the fraction of intensity removed is simply equal to the average of the extinction cross section

per unit ring area. When the particles are large, QMie _ 2, and the integral represents twice the

fraction of a unit ring area physically blocked by ring particles.

If the incident radiation is now assumed to strike the layer at some angle B (with respect to the

layer's interface), we can use an exactly similar approach to obtain

I 1 1 [_ n(a)da 2
.... Jo ra2 (QMie -- 2iPMie) (18)Ii 2/z0

where P0 = sin B. This assumes that B is not so small that the particles begin to shadow one

another.

From the definition of the normal optical depth r,

we may express r in terms of the physical model parameters as

"r = --2po In -- 2pt---o ira2 (QMie -- 2iPMie) n(a) da . (20)

Similarly, from Eq. 16, averaged over a distribution of particle sizes and generalized to oblique

incidence, the phase shift ¢_ relative to the incident wave is given by

(hn{E/Ei}'_
¢c = tan -1 k,Re{E/Ei},]

1 f 7ra2pMien(a) da
= tall- 1 _o (21)

1 - _ f _ra2QMien(a) da

4.2.3 The thin-layer model

Eq. 16 for a monolayer is also valid if the particles are spread in a layer of small thickness dl and

volume density nv, provided that the columnar density (area packing fraction) is small. A layer of

particles of arbitrary thickness I and volume density n_ can be thought of as a cascade of N layers,
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each of columnar density n, dl = n, I/N. In the near absence of coherent multiple reflections between

the layers (small volume fraction), Eq. 16 for the normal incidence case becomes

so that

2_ n INE/Ei = 1- _-_S(0) , (22)

I 1 2 n i2PMie) 2N-- = - Ira _- (QMie -Ii

where n = nvl is the columnar density of the full layer. Introducing a size distribution, generalizing

to non-normal incidence, and again neglecting shadowing, we obtain

I 1 1 [oo da _N-- = ra 2 (QMi_ - 2iPMie) n(a) . (23)
Ii 2Npo Jo

This model is especially useful when the layer is only a few particles thick and was effectively used

by Zebker et al. (1985) to constrain the particle size distribution of several features in Saturn's rings.

Note that, under the condition that the packing fraction of each layer is small, we obtain

i(I_ _- 1 raeQMicn(a) daN I_o

4.2.4 Many-particle-thick model

The many-particle-thick model is a cloud-like spatial distribution of particles within a layer of

thickness very large compared to individual particle sizes. We may derive the extinction behavior

of such a layer from results of the thin layer model described above by letting N ---* oc. Eq. 22

therefore reduces to

E/Ei = e-_ '_s(°) = e-r/:% i_'_,

where

and

47

r = _-nRe{S(0)} = ua2nQMi_

¢c = --_:-nlm{S(O)} = wG2nPMie .

In the presence of a particle size distribution and for oblique incidence, r and ¢c become
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JOG °°
r = wa2QMien(a)da (24)

and

¢0 = aa. (25)

Note that r is the normal optical depth, while ¢c characterizes phase shift along the oblique

path. If n(a) is very small, then Eqs. 24 and 25 are the same as Eqs. 20 and 21 for the monolayer.

This is because, for a tenuous ring, each particle is equally illuminated by the incident radiation,

regardless of vertical placement.

4.3 Vertical Profile

We now attempt to discriminate between the models introduced above based on the actual obser-

vations. Of primary importance in this regard is the observation that the integrated optical depth

is nearly conserved as ring width changes (Table 7).

We begin by assuming that the columnar number density n(a) varies as 1/W, where W is the

ring width. This assumption would be violated, for example, if the ring is significantly clumpy. Even

for a "well-behaved" elliptical ring, the assumption is not strictly true since the velocity of a ring

particle varies with azimuth as

V 2 --
GM

¢2,(1j+ 2¢cos0p+at(1

where GM is the gravitational constant times the mass of Uranus, ar is the semimajor axis of the

particle's orbit, e is the eccentricity, and 0p is the angle from orbit periapsis. In the small eccentricity

limit,

v _-- --(1 + e cos 8p).
V ar

We would expect the density of particles to vary inversely with particle velocity; the fractional

difference in density between periapsis and apoapsis should be approximately 2e. The most eccentric

Uranian ring, Ring e, has eccentricity e __ 8 x 10 -3 (French el al., 1988), thus the difference in density

as a function of longitude should never exceed about 1.5%.

With these caveats in mind, the assumption that n(a) is inversely proportional to ring width W

requires that the quantity

/0 odr _ra'QMie(A, a, m)n(a)da
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Ring fw(1 - Xr)
ingress egress

6 0.42 + 0.03 0.40 -I- 0.03

5 0.80 4- 0.05 0.80 4- 0.04

4 0.65 4- 0.04 0.60 4- 0.05

*a 2.63 4- 0.16 2.37 4- 0.07

/3 1.80 4- 0.10 1.90 4- 0.14

_/ 0.44 4- 0.03 0.41 + 0.03

*7 2.68 4- 0.07 1.38 4- 0.04
*6 2.18 4- 0.10 1.46 4- 0.05

.e 18.994- 0.33 36.60 4- 1.07

T

ingress egress
0.96 4- 0.07 0.90 4- 0.07

1.93 4- 0.08 2.07 + 0.09

1.57 4- 0.08 1.36 4- 0.08

6.17 4- 0.15 6.60 3=0.60

4.24 4- 0.12 4.08 4- 0.13

1.00 4- 0.07 0.90 4- 0.07

9.62 4- 0.28 a _-"t-1.19
v .vu_0.5 5

5.34 4- 0.13 4.21 + 0.13

93.38+_14 97.04 4- 0.57

TABLE 8: Comparison of monolayer and many-particle-thick models for applicability to the Uranian

rings. For a monolayer ring the quantity f_.(1 - Xr) is expected to be maintained at a constant

value as ring width changes. For a many-particle-thick ring the quantity f_ r is expected to remain
constant. The symbol "*" indicates those rings for which the many-particle-thick model is superior

to the monolayer model. Meaningful distinction is not possible for the other rings, mainly because

their widths do not change significantly between the observations.

be conserved at all observation longitudes. For a many-particle-thick ring model, this implies (see

Eq. 24)

w : constant,

while for a monolayer model it implies (see Section 4.2.2)

w(1 - Xn) = constant,

where Xn -- Re{E/Ei}.

Table 8 gives the integrated quantities fw(1 - Xn) and fw r for each of the nine Uranian rings

at both observation longitudes. For many of the rings, the width does not change enough between

the two observation points to allow a meaningful distinction between the two models. However, for

Rings a, 7, 6, and e, the many-particle-thick model provides a better match to the observations.

The most clear distinction is for Ring e, where the integrated quantities (1 - XR) differ by almost

a factor of two between the two observations, clearly not a constant value.

In order to investigate how thick "many-particles-thick" is, we note that variation of the columnar

density n = l n,_ with longitude can either be due to variation in the volume density nv in a ring

of constant thickness, variation in ring thickness I while maintaining a constant n_, or variation in

both. Here, we consider the implications of the first two alternatives.
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For the case l = constant and n, o¢ 1/W, tile ring thickness l is determined by the large mean

opacity observed near periapsis. As discussed in Section 4.2.3, for small packing fraction, the number

of layers N and the optical depth r are related by the equation

( 1/7e -T/_'° __ 1 2#0N rra2QMien(a)da '

or, grouping the N dependent terms on one side,

_o°° rra2QMien(a)da = 2poN (1- e-r/u°m) .

In the limit N ---+ 0% the right hand side ---+r, as is expected for a many-particle-thick model.

A lower bound on N may be obtained by expanding the exponential on the right-hand-side and

determining the condition under which the contribution of the second-order term in (r/I.toN) is

negligible. The result is

7"

--<<1.
4t*oN

For the Uranian ring occultation geometry, P0 "=-1, so the condition is r/4N << 1, or, at the 10%

level, N > 2.5r. For Ring e, the average r at the narrower ingress observation is approximately

4; therefore we require N > 10 layers in order to satisfy the above inequality. For Ring a, where

r " 1.5, this implies N > 4. For Ring 7, the large optical depth observed implies N > 10; the result

for Ring 6 is N > 4.

Conversion of limits on N to actual ring thicknesses can be accomplished only if one knows

the typical thickness of an individual layer and the typical distance between such layers. This

requires an estimate of the particle sizes and separation distances. In order for this model to be at

all self-consistent, we require separations between particles to be large enough to exclude coherent

interaction effects; in Chapter 5 we show that this requires a typical separation between particles

exceeding _ 5 radii. For Ring e, we find below that typical sizes inferred depend on the steepness

of the size distribution. For a moderately steep power law size distribution, with power index > 3,

the observations imply an "effective" particle radius > 70 cm; for a less steep size distribution

(q "* 2.75), the effective radius may be in the temcentimeter size range. Given these results, the

minimum thickness of Ring e would exceed about 30 meters in the first case and would exceed several

meters in the second.

Alternatively, if 1 o< 1/W and n_ = constant, the ring would be thinnest at apoapse, and gradually'

thicken to a maximum value at periapse. For Ring e, the requirement r/4N << 1 implies

N(241°) _ 3 and N(30°) > 10,
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where a mean r of _ 1.3 and 4 are assumed at the true anomMies indicated, respectively. The physical

thickness would vary in a corresponding fashion. This alternative model of Ring e appears to be

new. Its dynamical feasibility remains an open question, however, given that particle inclinations

have to significantly dampen over as short a time interval as half an orbital period.

Most models of dynamics favor thin rings o_er thick ones (v., e.g., Goldreich and Porco, 1987).

Particles in thick rings have larger random (i.e., non-Keplerian) velocities than do particles in thin

ones. Consequently, particles in thick rings suffer more dissipative collisions with one another, thus

thick rings have shorter spreading times. Given the maximum torques available from the shepherd

satellites Cordelia and Ophelia, Goldreich and Porco (1987) discuss the thickness of Ring c, and

place a limit of a few meters on its thickness, consistent only with the estimate obtained above

assuming a size distribution with q _ 2.75. However, this does not necessarily rule out the steeper

size distribution model, as dynamical theories, particularly those regarding ring viscosity, remain an

active area of research at this time.

4.4 Implications for Particle Sizes

The theoretical models discussed above can be used to constrain particle sizes in the Uranian rings.

As stated before, we assume spherical ring particles, and use Mie theory to compute the scattering

behavior of the individual particles.

We have shown in Section 4.2.1 that, for particles of size smaller than or comparable to the

wavelength, extinction of the incident wave is a strong function of the size of the particle. For a

particle in this size range, the extinction decreases as the incident wavelength increases. For this

reason, a difference in extinction between signals of two wavelengths is a strong indicator of particles

roughly of a size between those two wavelengths. This technique has been used, in part, to infer

particle sizes in Saturn's rings (Marouf el al., 1983; Zebker et al., 1985). Here we apply a similar

analysis to the Uranian ring measurements.

For brevity, we concentrate below on the many-particle-thick model. For most rings, a nearly

conserved integrated opacity at the two observation longitudes supports the many-particle-thick ring

model, as discussed in the previous section. Nonetheless, we have also carried out similar calculations

assuming the thin-layer and monolayer ring models, and the results remained qualitatively similar

to the results reported below, as discussed further at the end of this section. It is worth emphasizing

again that Ml three models assume that the particles in the ring are well-separated from one another,

so that their individual scattering behaviors are not affected by one another.
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For computational purposes, we use as a model for the size distribution n(a) a Saturn-ring-like

power law of the form

.(a) = -0 amin< a < (26)

n(a) = 0 otherwise.

Here, n(a)da is the columnar number density of particles in the size range a to a + da, ao is an

arbitrary reference size, and q is the power law index. Larger values of q (q > 4) model a near-

monodispersion of particles of size __ amin. The coefficient no =- n(ao) sets the absolute number

density of particles. Power law indices inferred in Saturn's rings are in the range of approximately

2.8-3.4 (Marouf et al., 1983; Zebker el al., 1985); theoretical models and simulations of ring erosion

processes predict values of approximately 3 (v., e.g., Hartmann, 1969). The upper and lower size

cutoffs of the size distribution are denoted by' amax and amin, respectively. Physically, amin is

typically set by Poynting-Robertson or exospheric drag, while am_× could be set, for example, by

tidal disruption of loosely-accreted particles (Weidenshilling et al., 1984; Longaretti, 1989). In the

following sections we attempt to set bounds on these parameters of the size distribution using the

many-particle-thick ring model. We begin with Ring e, which at egress has the best-determined

measurements of optical depth and phase delay due to its large width and relatively low optical

depth.

4.4.1 Ring e

As Table 7 indicates, at egress (true anomaly 241 °) and at 500 m resolution, the integrated optical

depth of Ring e at 3.6 cm wavelength is 97.04 + 0.57, while at 13 cm it is _a K7+324 The effect of_'_'-- 2.48"

the lower signal-to-noise ratio for the longer wavelength is clearly evident in tile larger uncertainty

interval of the 13 cm measurement. The corresponding normalized differential phase delay per unit

optical depth measured is 8 + 2 millicycles. Below, we use these measurements to set bounds on

amin, am_x, and q, assuming a variety of refractive indices.

Figure 28 showed the extinction curves Qmi_ and PMi_ for a single particle as a function of particle

size. We now include the effect of a size distribution, and display the computations in an alternative

form, shown in Figure 30, where differential optical depth Ar is plotted vs differential phase delay

A¢¢, parameterized by the minimum size cutoff amin- The differential parameters are computed in

terms of PMi_ and QMi_ using the definitions
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and

AT -- r(3.6cm)- T(13 cm)

= j[aam'x _ra2n(a)[QMie(3.6 cm) - QMie(]3 cm)]da
mia

2

ACe -- ¢c(13 cm)- 1-:]-¢c(3.6 cm)

= j(a:i'_"x 7ra2n(a)[PMie(13 cm)--1-}PMie(3.6 cm)] da.

The 3/11 factor is the exact ratio of the two radio wavelengths. This particular form for ACe

ensures removal of random phase fluctuations caused by short term instability of the reference

oscillator. In computing all curves in Figure 30, am_x has been fixed at 5 m.

For a relatively narrow size distribution (q large), the minimum size amin is the controlling factor

for the predicted r and ¢c, whose behavior follows the QMie and PMie curves of Figure 28. As

Figure 28 demonstrates, the differential optical depth starts at a large value for very small particles,

becomes negative in the resonance region (around the experiment wavelengths), and asymptotically

approaches zero as the particles become quite large. Differential phase delay begins at a small

positive value, reaches a maximum in the resonance region, and asymptotically approaches zero

from the negative side. This behavior closely resembles the behavior of the curve q = 4 in Figure 30.

For broader size distributions, (q < 3.5), the curves in Figure 30 show less dependence upon the

value of amin. This is due to the relatively larger number of big particles, which tends to dilute

the effect of the minimum size. In these cases, the chosen value of amax will have a stronger effect

on the shape of any given curve. In general, this dilution effect implies that, the broader the size

distribution, the smaller will be the maxima of differential optical depth and differential phase. The

contribution of the refractive index to the behavior of the curves may be seen in the lower panels

of Figure 30. Introducing loss into the refractive index tends to decrease the differential optical

depth and phase delay excursions, while a decrease in the real part of the refractive index slows the

progression along the spiral as a function of arnin. This is because (Re{m} - 1)ka is approximately

the quantity which controls the extinction behavior.

Also shown in Figure 30 is the measurement point for Ring e at egress, along with the 1- and

2-a confidence regions (boxes). (Measurements for other rings are also shown, but are discussed

in a subsequent section.) As evident, the region of the parameter space with q __ 2.75 has a
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See following page.

FIG. 30: Differential extinction parameters for assumed power-law size distributions, parameterized

in q. The large panel assumes a lossless refractive index of rn = 1.78 + 0.00i; the bottom panels

are for other, somewhat lossy refractive indices. Each curve is parameterizcd by the minimum size
of the size distribution amin; amax is fixed as indicated. Five curves in the top panel represent

five power law indices ranging from 2.5 to 4; in addition, the curve labeled "narrow" is a narrow

dispersion of particle sizes uniformly distributed from 0.7a to 1.3a (30% dispersion). This curve

begins at size a = 2.3 cm and ends at size a = 3.8 cm. The bottom panels show curves for the same

values of q with the exception of q = 2.75, which is not shown, and the same narrow distribution.

AT- = 7(3.6 cm) - r(13 cm); A¢ - ¢c(13 cm) - (11/3)¢,(3.6 cm). Also shown is the measurement

point for Ring e (egress), along with its 1-er (dashed line) and 2-(r (dotted line) confidence intervals.

Similar measurement points and uncertainty regions for an average of the measurements of Rings a

and ¢? and for an average of the measurements of Rings 6, 5, and 4 are shown.
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See following page.

FIG. 31: Regions of (amin, am_×) parameter space consistent with Ring e measurements, for q = 2.5
and q = 2.75. The horizontal axis in each panel is amin, the vertical axis is amax; therefore a diagonal

line amin = am_x represents a ring composed of a single size of particle. The two columns represent

different power law indices q; the three rows represent different refractive indices. Within each

panel, the shaded region is that portion of the (amin, am_x) space which is consistent with the (2<r)

measurement of differential optical depth for Ring e. The smaller region, outlined in a heavy line, is

the region consistent with both the differential optical depth and the (3-a) differential phase delay

measurement. Contours of constant cr/p are also given, where a is the surface mass density of the

ring and p is the bulk density of a ring particle.

portion contained within the uncertainty region of this measurement. The extent of such a region is

dependent on amin, arnax, and the assumed refractive index m. We investigate further dependence of

the extinction behavior on these members of the parameter space by adopting the alternate format

shown in Figures 31 and 32. Here, each panel corresponds to an assumed q and ,n, and regions

consistent with the differential observations are identified in the (amin, amax ) domain, represent.ed

by the two axes of each panel. Figure 31 considers power law indices q of 2.5 and 2.75; Figure 32

considers q = 3.0 and 3.5.

Figures 31 and 32 contain a good deal of information. We will interpret these figures in stages,

starting by relating the presentation here to figures we have previously discussed. The advantage of

the format of Figures 31 and 32 is that it allows one to identify immediately the implications of the

measurements of Ring e as parameters arnin, amax, and q are varied, and also to recognize the effect

of a lossless refractive index (top row), a very lossy refractive index (center row), and a somewhat

lossy, smaller refractive index (bottom row). Conceptually, we think of these three model refractive

indices as lossless ice, very lossy material such as carbon, and somewhat lossy, fluffy ice, respectively.
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FIG. 32: Regions of (amin, amax) parameter space consistent with Ring e measurements, for q = 3.0

and q = 3.5. See caption of Figure 31 for details.
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Few measurements of material properties at outer solar system temperatures are available, and little

is known of the bulk material making up the rings. The very low albedo of ring particles and the

absence of wavelength dependence in their spectral relativity are consistent with carbon material

(Porco et al., 1987), but this might only be a thin coating on the surface of an otherwise unidentified

bulk composition.

The irregular curves in Figures 31 and 32 identify the boundaries of the regions in the (amin, amax)

domain which are consistent with the (2-a) confidence region of the Av measurements for Ring e

egress. It may be recalled that these measurements indicate that At/T(3.6 cm) = 1 =1=6%. The

smaller regions, outlined in a heavier pen, represent those regions consistent with both the Ar and

A¢c measurements; for the present time we will postpone discussion of these smaller regions. The

diagonal lines in Figures 31 and 32 correspond to amin : amax, that is, a monodispersion of particles

of size a = amin, regardless of the nominal value of q. Therefore, for each row, the allowable

regions have the same shape near the diagonal line. The general behavior of these regions near the

diagonal line follows closely the behavior of the extinction curves for a single particle, previously

discussed in Section 4.2.1. Recalling Figure 28, for a lossless refractive index m = 1.78 + 0.00i,

r(3.6 cm) __ v(13 cm) (i.e., QMie(3.6 cm) _ QMie(13 cm)) for several different ranges of a: near

a _ 3 cm, at a number of other points at larger values of a where the 3.6 and 13 cm curves cross,

and finally a _> 70 cm. This behavior may also be seen in the top rows of Figures 31 and 32. The

small "islands" running close to the diagonal line represent the multiple crossing points and the

region amin _ 70 cm corresponds to the radius range in Figure 28 where the difference between

the QMie(3.6 cm) and QMie(13 era) curves is consistent with the small Av observed. For a lossy

refractive index (bottom two rows), these "islands" disappear, leaving only the first crossing point

and the large-particle regions.

As we move upwards from the diagonal line (amax > amin), we allow for a broader size distribution

of particles, and the shapes of the regions consistent with the measurement change. We find that,

for the lossless refractive index, the small islands disappear as we move away from the diagonal line,

indicating that these extra .crossing points no longer exist when a distribution of particle sizes is

considered. We also find that the large-particle region moves leftward, since if amax is increased

beyond -_ 70 cm, then amin may be decreased to a smaller value while maintaining r(3.6 cm) _

r(13 cm).

In Figure 32, note the allowable narrow vertical region around amin : 3 cm for the top two

rows and near amin : 10 cm for the bottom row, for the eases q = 3.0 and q = 3.5. This region
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corresponds to the first crossing point of the 3.6 and 13 cm extinction curves (see Figure 28). As

the relative number of large particles is increased by letting q : 2.5 or 2.75, as in Figure 31, we find

that these vertical narrow regions broaden, and significantly more of the parameter space becomes

consistent with the measurements.

At this point we may introduce discussion of the smaller regions in Figures 31 and 32, outlined

with a heavy pen. These regions are where not only At/r(3.6 cm) is consistent with the mea-

surements, but also ACe/T(3.6 cm). These regions are more restrictive that the regions previously

discussed; in fact for the power law indices q = 3.0 and 3.5 in Figure 32 they are so restrictive that it

seems unlikely that these are the true constraints on the size distribution. For instance, for q = 3.0

or q = 3.5, note that only a portion of the vertical column is allowed, and none of the large-particle

region is consistent with both the Ar and the ACe measurements. The reason for this is that we

have measured a small, but finitely positive, differential phase delay for Ring c (see Table 7). Large

particles are expected to have a very small phase advance (see Figure 30).

In general, for the cases q = 2.5 and q = 2.75 considered ill Figure 31, the regions consistent

with both the Ar and A¢_ measurements are almost as restrictive as those for the cases q -- 3 and

q = 3.5. However, for these lower values of q, ami n is relatively loosely constrained and area x is the

parameter which is constrained. For example, for the refractive index m = 1.70 + 0.70i and q = 2.75

case considered in Figure 31, am_x must lie between 1.15 m and 2.40 m in order for the predicted

AT and A¢¢ to match the observations. Similar results hold for all but tile lossless refractive index

case for q = 2.75. For this combination of parameters, both a wide range of amax _> 165 m and a

wide range of amin ,_< 2 cm are allowed by tile observational measurements. Thus we find that with

the exception of the m = 1.78 + 0.00/, q = 2.75 ca.se, all of tile regions consistent with both tile ,_kr

and ACe/r(3.6 cm) measurements are fairly restrictive, and depend intrinsically on the wavelengths

used in this experiment. For example, the narrow vertical columns in Figure 31 and 32 lie at the

crossing points of the extinction curves for A = 3.6 and 13 cm.

We investigate further the case q _ 2.75 and lossless refractive index with the aid of Figure 33,

which shows the predicted values for At/r(3.6 em) and ACe/r(3.6 cm) as a function of q. For these

curves, amin has been fixed in the Rayleigh regime (amin = 0.1 cm), and we explore the sensitivity to

am_× and q, requiring both the At/r(3.6 cm) and A¢_/r(3.6 cm) curves to lie within the confidence

interval of each measurement, marked with horizontal lines. Thus, for area× = 2 m, for example,

any q _< 2.8 is consistent with the Ar observation, while 2.5 _ q _ 3 is required to satisfy the A¢_

observation; agreement with both observations requires 2.5 <_q <2.8. Similar limits on q as a function
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of amax are shown in Figure 34. Clearly, for q --_2.75, there is a broad range of amax which will result

in a match to the observations. Similar conclusions hold if the particles are slightly lossy (dashed

curves in Figure 34), except that q becomes more tightly confined to a smaller value q __ 2.65.

We now consider the issue of the mass of Ring e. Figures 31 and 32 display contours of constant

(r/p, where (r is the surface mass density (g-cm -2) and p is the particle mass density (g-cm-3).

This quantity is determined at each point in the region by using the size distribution at that point

combined with the measured optical depth of the ring, which sets the coefficient no of Eq. 26.

If we confine our attention to regions consistent with both the Ar and the ACe/r(3.6 era) mea-

surements, and in addition, do not consider regions for which the range of allowed distributions is

overly restrictive, we find that only the case rn = 1.78+0.00i, q = 2.75 provides a plausible match to

the observations. For this case, _/p may be as small as --. 50 cm, and assuming an ice-like particle

material with p _ 1 g-cm -3, this implies a _>50 g-cm -_.

As discussed further below, we have reasons to believe that the phase delay measured for the

inner Uranian rings is anomalous, and may be caused by something other than particle sizes. It may

also be the case that the phase behavior of Ring e is not caused by particle sizes. In this case we may

consider the regions in Figures 31 and 32 which do not necessarily match the A¢ behavior, but for

which the Ar behavior does match the observations. Allowed regions in this case include particles

of effective radius _>70 cm and surface mass density _ 80 g-cm -2, irrespective of q (the upper-right

shaded regions). For q = 2.5 and 2.75, they also include broad distributions for which the limits on

amia and am_x are refractive index dependent (see Figure 31). Smaller limits on a are imposed in

this case; for example, for q --- 2.5 and rn = 1.78+ 0.00i, a_ 10 g-cm -2 provided amin _< 2 cm and

am_x > 20 era.

While the above results are based on the assumption of the many-particle-thick model, it can he

shown that similar conclusions are reached for the monolayer or thin-layer models. This may be seen

for the case of the monolayer model, for example, by noting that the theoretical curves in Figure 30

remain unchanged provided that the axes are properly interpreted in terms of observables relevant

to that model. To determine these observables, we recall that for a many-particle-thick model, Ar/r

and AOc/'r plotted in Figure 30 are computed in terms of the physical model parameters using the

relation

Ar +iA¢¢ _ .[o rca2n(a) [AQ Mie + i/_o 1APgie] da (27)
r(3.6 cm) fo _ra_n(a)QMi eda '
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FIG. 34: Range of powerlaw index q consistent with Ring e measurements, for amin in the Rayleigh

regime. For a given amax, the range of q consistent with the measurements lies between the two curves

of a given line type. Curves for m = 1.78÷0.00i are drawn with solid lines; curves for rn = 1.78+0.10i
are drawn with dashed lines. Generally, the top curve of each pair is determined by the Ar/r(3.6 cm)

measurement, and the bottom curve of each pair is determined by the A¢_/r(3.6 cm) measurement.

This is true for the case m = 1.78 + 0.10i, regardless of am_x. For the m = 1.78 ÷ 0.00i case, it is

true for amax > 50 cm, but for am_x _< 50 cm, this dependency is switched.

where AQMie = QMie(3.6 cm)-QMie(13 em) and APMi¢ = PMi¢(13 cm)--3pMi_(3.6 cm). h similar

relation for the monolayer model can be obtained starting from our previous result (see Eq. 17):

2+o/0Ei -- XR + iXl = 1 - lra2n(a) (QMie - i2PMie) da

to obtain

2poA XR + iAXI = fo zca2n(a) [AQMie -[- i/'zo1APMie] de (28)
2#0(1 - Xn(3.6 cm)) fo ra2n(a) QMiCda '

where AXR = XR(13 cm) - Xn(3.6 cm) and AXI = XI(13 cm) - _X1(3.6 cm). Equations 27

and 28 immediately imply that, for the same model parameters, the theoretical curves in Figure 30

also apply for the monolayer model, provided that the horizontal axis now represents 2tJoAXR/[1 --

Xn(3.6 cm)] and the vertical axis represents _xX1/[l - XR(3.6 cm)]. The nominal measured values
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4.4. IMPLICATIONS FOR PARTICLE SIZES

fall at approximately the same locations relative to the theoretical curves, and the overall conclusions

based on the many-particle-thick model remain qualitatively invariant.

There is evidence that Ring e is relatively depleted in sub-centimeter sized particles. Reported

values of integrated optical depth at much shorter wavelengths (French et al., 1988; CoIwell ei a/.,

1989) are comparable to the radio values presented here. Ring e is the best measured ring ill all data

sets, and the integrated optical depth measured by the Voyager UVS and PPS experiments is in

fact somewhat smaller than the value measured at centimeter wavelengths (Holberg el al., 1987)--

a true puzzle if this claim is correct. On the other hand, ground-based measurements of stellar

occultations, while somewhat uncertain due to diffraction limitations, indicate an integrated optical

depth for Ring c at a wavelength of 2.2 pm that is approximately 80-100 km (French el al., 1988).

Thus, there is no evidence for significantly greater extinction at the much shorter wavelengths than

at microwave wavelengths, indicating a relative depletion of sub-centimeter size particles. Itowever,

this does not rule out amin in the sub-centimeter size range if q < 3, as, in such a case, the optical

depth is controlled primarily by the large particles.

4.4.2 Other outer rings (r/, 7, and (5)

Rings r/, 7, and _ appear to be qualitatively similar to Ring e, as may be seen in Figure 26, which

shows the average differential optical depth and average differential phase delay for all nine rings.

For each of the outer rings, there is little evidence for differential optical depth, and also little phase

delay at either wavelength. However, the uncertainties for these narrower and often much more

optically thick rings are much larger than for Ring e, so it is not meaningful to set bounds on the

size distribution in the way we did for Ring e. There is no reason to believe, however, that the particle

size distributions in these other outer rings are significantly different than in Ring e. The lack of

differential optical depth at the two radio wavelengths, and the near equality between the radio and

reported values for integrated optical depth observed at much shorter wavelengths (French et al.,

1988; Colwell et al., 1989), leads us to the conclusion that these rings are also relatively depleted in

centimeter and smaller size particles.

4.4.3 Inner rings (6, 5, 4, a, and /3)

We now consider the five inner rings, Rings 6, 5, 4, a, and/3. Figure 26 shows that, unlike Rings 7/,

7, and 6, the qualitative behavior of these rings differs substantially from that of Ring e. For each

of these inner rings, there is significant phase delay at 13 cm relative to that at 3.6 cm. When
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Rings

6, 5, and 4

c_ and fl

<;At:> <ZX_b;> b
<_(3.6 cm)> <_-(3.6 crn)>

% (millicycles)
5±13 52_9

8_7 63±5

1±3 8_2

TABLE 9: Average differential optical depth and differential phase delay for the five inner rings as

compared to Ring e (egress) (See Table 7).

normalized by the optical depth at 3.6 cm, these phase delays range from approximately 40 to 75

millicycles per unit optical depth (Table 7). However, like the four outer rings, none of these inner

rings (with the possible exception of Ring fl) shows significant differential optical depth, although

within the relatively large measurement uncertainties (due to the narrow widths of these rings),

differences of between 15 and 40% could go undetected.

The best-measured of the five inner rings are Rings _ and fl, due to their relatively greater

widths. Because the phase and optical depth behavior of these rings appears to be consistent both

among themselves and also at the two observation longitudes (see Figure 26), we choose to average

the measurements together in order to decrease tile measurement uncertainty. For the same reason,

we average the measurements for the three innermost rings, Rings 6, 5, and 4. Results are shown in

Table 9, and also plotted together with the corresponding uncertainty regions in Figure 30.

In constrast to the measurement point for Ring e, Figure 30 shows that the measured differential

phase for Rings 6, 5, and 4 matches only a very small portion of the q = 4 curve 3. This is equivalent

to requiring that the particles be of essentially a single size, have a nearly lossless refractive index,

and be precisely at the maximum phase point of the 13 cm extinction curve (Figure 28) 4. The

rneasurement point for Rings a and fl shows even larger phase delay than that for Rings 6, 5, and 4;

Figure 30 shows that while such delays are possible to obtain with a very narrow size distribution,

the allowable range of sizes is quite small; slightly smaller or larger particles will show significant

differential optical depth, which is not observed. Furthermore, this narrow size range is refractive

index dependent. As these seem to be highly artificial conditions, it is plausible that the phase

3The phase behavior of these inner rings is precisely opposite to what one would expect to observe from a simple

slab of dielectric material. In this case, one would expect the 3.6 cm wavelength to be delayed by 11/3 as much as

the 13 cm wavelength. Our definition of ACe would result in ACe __ 0 for such a slab; however, its presence would be

detectable in the individual measurements of ee.

4 The maximum ACe/v(3.6 cm) is for a strict monodispersion of lossless particles of size about 2.8 cm (for refractive

index m = 1.78 + 0.001). and is ,-, 0.15 cycle. Addition of loss to the refractive index (m = 1.78 q- 0.10i) reduces this

maximum to _ 0.09 cycles; a slight dispersion of sizes between plus and minus 50% of a central size has a maximum

A¢c/_(3.6 cm) ,,_ 0.08 cycles, at a central size of 2.4 cm.
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4.4. IMPLICATIONS FOR PARTICLE SIZES

behavior of the inner rings (and perhaps Ring _ as well, albeit to a smaller extent), is not due to

particle sizes, but rather due to some other unmodelled physical process. In addition, the particle

sizes implied by the part of the curve closest to the inner ring measurements are too small to

be consistent with lifetime estimates for particles in the rings due to atmospheric drag, an issue

discussed in Chapter 3. Finally, an indication that these rings are significantly depleted in sub-

centimeter sized particles is the near equality between the radio and other measurements at shorter

wavelengths (French et al., 1988, Colwell el al., 1989).

4.4.4 Tenuous ring companions

The tenuous companions of Rings 77and _ were shown in Figures 20 and 21. Approximate locations

and estimated integrated opacity at 3.6 cm for these companion rings have been given in Table 3.

Because the mean opacity at 3.6 cm is comparable to Earth-based stellar occultation values (Elliot

and Nicholson, 1984), a significant fraction of the particles in these tenuous companions must exceed

a few centimeters in size.

4.4.5 Rings discovered by Voyager

Voyager discovered several new ring features in backscatter (on approach to the planet) and during

ring-plane crossing (Smith el al., 1986), none of which are detectable in the radio data. One feature

is quite wide, and very tenuous, spanning the distance between 37,000 and 39,500 km from Uranus

(Smith e_ al., 1986). Its optical depth is estimated to be approximately 1 x 10 -3, which is well below

the detection sensitivity of the radio experiment, given the magnitude of typical fluctuations in signal

level (ar _ 0.02) in non-ring regions. A second feature, Ring 1986U1R, is located approximately

50,000 km from Uranus (Smith et al., 1986; French e1 al., 1988), and has an optical depth measured

by the Voyager PPS experiment of r "" 0.1 (Lane e* al., 1986). The data in the vicinity of this ring

have been reconstructed from the raw radio data at a resolution of 200 m assuming that the ring

is circular and that it lies in the mean plane of the rings. There is no evidence for 1986U1R in the

radio data, but as its optical depth as reported by PPS is near the detection threshold of the radio

experiment, no definitive conclusion can be drawn. This ring was also undetectable in ground-based

observations of the Uranian rings at a wavelength of 2.2 txm (Kangas and Elliot, 1987). The ring

would not be detectable at 3.6 cm wavelength if the majority of the particles are much smaller than

the radio wavelength, as Holberg e_ al. (1987) indicate is likely. A missed radio detection could

also occur if 1986U1R is azimuthally clumpy, as reported by Ockert el al. (1987). A third feature
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reported by Smith el al. (1986) is a companion to Ring 13, located at approximately 45,736 km, with

a brightness of approximately 0.1 that of Ring/3. We do not detect this feature in the radio data.

4.5 Discussion and Limitations

In this chapter we presented the integrated opacity and phase measurements for the Uranian rings

at wavelengths of 3.6 and 13 cm. We then described the standard theory for interpreting such

measurements in terms of physical properties of the rings and used these models to place some

constraints on the vertical profile of the rings. Monolayer and many-particle-thick models result in

different predictions for how integrated optical depth should vary as a function of ring width. We

find that, for those rings where a clear distinction between the models can be made, the many-

particle-thick model is a better fit to the observations. Lower bounds were placed on the thickness

in terms of numbers of "layers" in the ring. In addition, we proposed an alternative model for Ring

in which the thickness of the ring does not remain constant in longitude, but rather varies inversely

in proportion to the varying width.

In this chapter, we also conducted an analysis of particle sizes in the Uranian rings using the

standard theories outlined above. The most striking observation is the large differential phase for the

inner Uranian rings (6, 5, 4, a, and _). The large phase delay for the 13 cm wavelength implies an

extremely small possible range of particle sizes assuming the standard theories. What is required is

a near-monodispersion of particle sizes at the crossing point of the extinction curves for A = 3.6 and

13 cm. Only this narrow size distribution can produce such large differential phase per unit optical

depth. We note here that this anomalous phase behavior is present in some places in Saturn's rings

as well. Embedded particle-accumulation-groups (PAGs in the nomenclature of Rosen, 1989) in

Saturn's Ring C are qualitatively similar to the Uranian rings. They are sharp-edged and relatively

optically thick accumulations of material, although their widths are generally much greater than

those of the Uranian rings. These features show phase delay behavior quite similar to that of the

inner Uranian rings, with ¢c(13 era) significantly larger than ¢c(3.6 era) (see Figure 17 of Marouf

et al. (1986), and Saturn ring maps in Rosen, 1989). The magnitude of the phase delay per unit

(normal) optical depth is several times larger than that observed in the Uranian rings; given the

much longer path length through Saturn's rings due to the grazing incidence of that occultation, the

phase delay per unit amount of material is roughly comparable. However, there is clear evidence for

differential optical depth in the Ring C PAGs, while no such evidence is seen in the Uranian rings.
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The results for the inner rings upon application of the standard theories may imply that the

large observed phase delay is in fact not due to particle sizes. A monodispersion of particles of a

very particular size (a size which is directly related to the wavelengths used in the experinaent) does

not seem to be a likely size distribution. Therefore we hypothesize that such phase behavior is due

to some other, unknown, cause.

We conducted a more extensive analysis of particle sizes in Ring e, for which tile highest confidence

measurements exist. If we consider both the differential optical depth and differential phase delay

measurements, we find that particle size distributions are rather tightly constrained. For q _> 3,

ami, is required to be at the crossing point of the Mie extinction curves for A = 3.6 and 13 cm.

For q < 3, amin is rather loosely constrained to be < 1 cm but am_x is then tightly constrained.

The exception is the case Tn = 1.78 + 0.00i, q = 2.75, for which a relatively broad range of sizes is

allowed, so long as amin <2 cm, and amax > 165 cm. In this case, cr >50 g-cm -2, assuming all ice-like

bulk particle density. Given the results for the inner rings reported above, we also allow for the

possibility that the phase behavior is not due to particle sizes, and consider the implications of the

differential optical depth measurements alone. In this case the measurements allow typical particle

sizes exceeding ,_ 70 cm in radius, independent of q, and the corresponding surface mass densities

are large (_r > 80 g-cm -2 if the bulk density is .-- 1 g-cm-3). If q < 3, tlle minimmn size can be in

the Rayleigh region (arnin < 1 cm) provided that amax exceeds a refractive index dependent, value.

In this case _r can be as small as 10 g-cm -2 Other outer rings (Rings _/, 7, and a) have optical depth

and phase delay behavior similar to that of Ring e.

The three models proposed to describe extinction by planetary rings have several strengths but

also several serious weaknesses. The first strength derives from the relative ease with which the Mie

coefficients for scattering by a sphere may be computed. Efficient algorithms (e.g., Dave, 1968) are

readily available to solve the problem of scattering by a sphere of arbitrary refractive index and

of essentially any size. A distribution of sizes can be incorporated easily. Secondly, the monolayer

and many-particle-thick models are simple to describe, and form two endpoints of a continuum of

possible vertical distributions. With such models, parameters of the size distribution can be easily

varied in an attempt to match a set of observations. For these reasons, this approach to the problem

has become quite standard in the field, and in many cases has yielded consistent results in analyzing

particle size distributions.
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The weaknesses of these models are several. The first derives from the basic assumption of

sphericity of the ring particles. The simple geometry of a sphere allows the type of efficient solu-

tion that Mie theory provides. It is most certainly only an approximation to the true shape of a

ring particle--a class of objects of which not a single specimen has been directly observed. Some

characteristics of scattering by spheres (particularly lossless ones) are due to the perfect symmetry

of the object, and would disappear for a roughened particle. The use of a size distribution gen-

erally mitigates such artifacts in the scattering behavior. However if the particles are significantly

non-spherical, then Mie theory is no longer a valid approximation to the scattering behavior. An

additional implicit assumption in Mie scattering theory is that the particles carry no free charge. An

interesting hypothesis for the cause of the anomalous phase behavior is that, because the inner rings

are immersed in the extended outer atmosphere of Uranus, there is a charging of the ring particles by

the plasma. However, when we investigated this hypothesis using a variant of Mie theory developed

by Bohren and Hunt (1977), we found that charging voltages necessary to cause detectable changes

to the scattering behavior were in the megavolt range, which seems highly unlikely.

Probably a more serious flaw to the theories than the assumption of sphericity is the assumption

that there are no coherent interactions between the particles. As the particles become closer to

one another, at some point they will sense each other's presence coherently, and a pair of particles

will begin to behave more like an elongated, larger particle. The classical models require that the

particles remain far enough from one another to avoid such interactions--real planetary rings may

not be so constrained.

Past analyses of radio occultation observations of rings suffer from probable violation of this

assumption to some degree. The occultation by Saturn's rings was at an extremely grazing incidence

angle of only 6 ° (Tyler et al., 1983). Because of this, shadowing of ring particles behind one another is

probably significant. For the Uranian ring occultation experiment, although the incidence angle was

near-normal, the optical depths observed for several of the rings imply a large number of particles

in a small area. Unless the ring is extremely thick in the vertical dimension, volume densities

must become fairly large, and violation of the large-separation assumption is possible. Although

for Ring _ the conservation of integrated optical depth seems to imply that shadowing effects on

the optical depth are not significant, it remains to be investigated whether the anomalous phase

behavior observed might be a coherent interaction or other close-packing effect. In the following

chapter we address the problem of coherent interactions in more detail.
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Chapter 5

Coherent Scattering by Clusters

of Spheres

The models for scattering of radio waves by planetary rings outlined in Chapter 4 rely on the

important assumption that the scattering behavior of an individual ring particle is not influenced

by other particles situated nearby. It is clear that this assumption is invalid if the particles are

arbitrarily close. For example, a cluster of particles in close proximity will look like a single larger

particle to the incident wave, and we have already seen that extinction efficiency can be a strong

function of particle size. Furthermore, interference effects between two particles of size comparable

to the wavelength cannot be neglected when the particles are close to one another. Wang el al.

(1981) studied the scattering behavior of touching spheres a few ka in size as a function of scatterhlg

angle and found that, at a particular angle, constructive interference causes a dramatic enhancement

in scattering over that predicted by the theory for non-interacting spheres.

As discussed in Chapter 4, previous analyses of radio occultation results have relied oil the non-

interacting-particles models outlined in that chapter. The attraction of these models is that, given

assumptions for parameters of a particle size distribution and a refractive index, it is straightforward

to compute optical depth and phase delay as a function of incident wavelength. Parameters of the

size distribution can then be varied until the predictions of the model reasonably match the set of

observations at different wavelengths.

The motivation for understanding when and how the scattering models break down should be

obvious. Even for eases when the simple models appear to give reasonable results for particle sizes
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and ring properties, it is important to know how sensitive the results are to the assumption that

close proximity of the particles does not affect the scattering behavior of the ensemble. In addition,

as discussed in Chapter 4, some observations are inherently inconsistent with the theoreticM results

based on the assumption of non-interacting, spherical, homogeneous particles. In this case, it is

important to investigate the possibility that it is close packing of the particles which is causing the

discrepancy. Quantitative characterization of close-packing effects, and identification of the range

of particle sizes, separations, and incidence geometry for which they are significant, is important for

present and future analyses of ring occultation measurements. Limited progress in this regard has

been previously reported (Marouf, 1975).

In this chapter we lay the foundation work necessary to achieve this more ambitious objective.

First, an analytical solution of the problem of scattering by two or more arbitrarily placed spheres is

used to compute numerically the complex extinction for several arrangements and sizes of particles.

The results are compared to the non-interacting-particle results and coupling effects are identified

and characterized. Second, we develop a framework for using the two-sphere results to determine

the complex extinction caused by a ring composed of many particles. This is accomplished by

decomposing the problem of interaction between many spheres into a set of pairwise interactions.

Such an approach is validated through comparison with exact solutions for clusters of spheres. The

pairwise-approximation is then used to investigate extinction by a monolayer ring and the results

are discussed in the context of ring measurements.

5.1 Coherent Scattering by Two Spheres

The problem of scattering by two or more spheres has almost as long a history as the problem

of scattering by a single sphere, discussed in Chapter 4. One approach to the problem has been

to use the modal expansion method developed for a single sphere, together with the translation-

addition theorem of spherical harmonics, to express the spherical waves excited in one sphere in

a reference frame centered on the other sphere(s). Trinks (1933) was the first to investigate this

approach, but the complexity of the translation-addition theorem he used limited his results to

spheres of radius much smaller than the wavelength (the Rayleigh regime). Liang and Lo (1967)

took the problem a step forward by utilizing the translation-addition theorem of Stein (1961) and

Cruzan (1962). Unfortunately, the time needed to calculate the translation coefficients was still a

limitation, and only spheres smaller than _ A in radius could be considered. Bruning and Lo (1971)

derived a recursion relation which permitted much faster computation of the translation coefficients,
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permitting spheres of radius as large as tens of wavelengths to be considered. Other computational

results for scattering by two spheres based on the matrix inversion method of Bruning and Lo (1971)

have been reported by Dean (1982). The present work uses an adaptation of a FORTRAN program

written by Kirk Fuller (Fuller, 1987) to solve the multiple scattering problem by clusters of up to

five spheres using an order-of-scattering approach or a matrix inversion approach. The limit of five

is set by the computational complexity of the problem.

Both Fuller's and Dean's computational results have been successful in reproducing close spacing

effects observed in microwave laboratory measurements (Wang, 1979, Wang et al., 1981, Kattawar

and Dean, 1983, Fuller et al., 1986). Borghese el al. (1984a), Borghese el al. (1984b), and Sindoni

et al. (1984) have pursued computational studies of scattering by clusters of spheres using a similar

technique, although because they have concentrated on studying the effects of as many as 20 spheres,

the sizes they have considered have necessarily been quite small, with ka generally less than 0.1.

The modal expansion method utilized here, while limited to spheres, has the advantage that

bodies of a relatively broad range of sizes may be treated efficiently. Other methods, while more

general, have their own limitations. For example, while computational procedures such as the T-

matrix algorithm (Waterman, 1965; 1971) or the uni-moment method (Mei, 1974) are more adaptable

to scatterers of arbitrary shape, computational demands grow rapidly with the size of the scatterer,

and tile methods are not generally practical for bodies larger than a wavelength or so in size.

The choice of a sphere as the scattering object is directly tied to the modal expansion method

used to solve the scattering problem. Many of the characteristics of scattering by non-spheres

may be inferred from the scattering behavior of spheres, particularly for randomly-oriented, slightly

roughened spheres, and observations in the near-forward direction. Results must be regarded with

due care, however. There are some aspects of scattering by spheres which are due entirely to their

perfect symmetry, one example being the ripple structure evident in Figure 28 of Chapter 4.

The radio occultation experiment transmits a radio wave through the rings, and tile attenuated

and phase-shifted signal is received on Earth. For this reason, the quantity of most interest here is

the extinction, that is, the removal of energy from the incident beam in the exact forward direction.

We have found that relatively little work has been reported on this problem; most researchers have

been primarily interested in the scattering behavior as a function of observation angle. Furthermore,

discussion of the imaginary part of the extinction is particularly sparse (even for single spheres),

presumably because the motivation for many scattering problems is derived from uses of incoherent

sources.
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In analogy to the extinction parameters QMie and PMie introduced in Section 4.2.1 for single

spheres, we define

Q(N) = k__G Re{S(N) } (29)

p(N) _ :_GIm{S(N) } ' (30)

where S (g) is the forward scattering amplitude of N spheres, and the total cross-sectional area G is

defined by

N

G - Egi,
i----1

where g/ is the cross-sectional area of the ith sphere. In a parallel manner, we also define

N

td--"_(N) 47r ,_ ,(_(N)_ 471" ,_ x-" _(1) (31)
n.l. = ]¢_erte/'_n.i. ) = _--2GrLe,2_._ D/

i=1

N

p(N) 2_- ,,_N)_ 4_"
n.,. -- k-_Glm/_n.i. ) = _---GIm E S} 1), (32)

i=1

where S_.iN) is the forward scattering amplitude of N noninteracting particles, which is simply the

sum of the individual forward scattering amplitudes S} 1).

5.1.1 Theoretical framework

Figure 35 shows the relevant geometrical parameters for the two-sphere problem. The incident field

is E i with scattered wave vector ki, and the field measured in the exact forward direction in the

plane containing the scatterers is E, with wave vector ks = k i. The angle between the exact forward

direction and a line connecting the centers of the spheres is a. Without loss of generality, we consider

only two possible polarization directions for the electric field, elJ and fix, with 611a unit vector lying

in the plane of the scatterers and 6± a unit vector lying perpendicular to that plane. In general, the

spheres may be of different sizes, but for simplicity, we assume that they are of identical radius a and

that their centers are separated by a distance d. These length scales can be made non-dimensional

by multiplying them by the incident wavenumber k = 27r/A.

It is assumed that the field scattered by two spheres may be expanded as

Es(r)= , (3)1"_rnn (r) + Zbran Mra n (r) ,
n=l rn=-n 1=1
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sphere 1

ks = k i

_ sphere 2

• = Idl,_l

k i

FIG. 35: Relevant geometrical parameters of the two-sphere scattering problem. The incident

electric field is El, which is polarized along one of the two orthogonal directions 611 or 6_L. The
spheres are of dimensionless size ka and their centers are separated by a distance kd, where k is

the wavenumber of the incident wave. The orientation angle a is the angle between the forward
direction and a line connecting the centers of the two spheres. The received field E is measured in

the forward direction, in the plane containing the scatterers.
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where lama and tb,m are the expansion coefficients for the/th sphere, and tN_)(r) and tM_)(r) are

(z)
the vector spherical harmonics in a coordinate system centered on the/th scatterer, e.g., _VI,_,(r) _=

M_)_[k(r - rl)]. Explicit forms and discussion of the vector spherical harmonics may be found in

basic electromagnetics texts, for example, Stratton (1941), Jackson (1975), or, more recently, Bohren

and Huffman (1983).

The incident plane wave is expanded in a spherical coordinate frame centered on one of the

spheres, assumed to be located at the origin. For reasons discussed below, it is advantageous to

orient the two spheres along the z-axis. The expression for the incident plane wave, expressed in

spherical coordinates centered on sphere 1 (at the origin) is

El(r) = E0 _ 1pro, 1N0) + 'qm, ore,l,
n--1 m=--n

= Memn -b iMo,nn, Nm,_ = Nemn + iNomn, and the multipole coefficients are definedwhere Mmn

by

[ O m _ a)cosTp]= -i"  n+l (.-m)! -i P. (cos )sinvv+q P (cosn(n + 1) (nV m)!
(33)

•n 2n+l (n-m)! [. m pnm(cosa) sinTv_ff_p_(cosa)cos.yp]

In Eq. 33, 7p is an angle in the plane orthogonal to the incidence direction and indicates the

polarization direction of the incident wave; 7p = 0 and 7v = r/2 are polarization in the elf and ez

directions respectively. The coefficients of the plane wave about the second sphere are found simply

by multiplying lpmn and lqmn by the phase factor exp(ikdcos a),

A critical requirement for the development of the theory of the two-sphere scattering problem

is to expand the fields scattered by the first sphere in the coordinate frame of the second sphere.

This is accomplished through the use of a translation-addition theorem (Stein, 1961; Cruzan, 1962).

In the special case in which the coordinate translation is along the z-axis (hence the reason for the

general form for the plane wave expansion above), the theorem gives

oo

iM(3) ---- E_mfl

u=max(1,m)

oo

IN(3) -_- E

u=max(1,m)

"_VIm_Amv(kdl,2) + , )

( :_q(U A'm(kdl 2) + _vlO) W_n(kd_,2))
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ka CPU time (see)
0.2 1.2

0.5 2.0

1.0 3.1

2.0 4.6

5.0 25.7

10.0 106

20.0 740

TABLE i0: CPU time to compute the scattering amplitude of a pair of spheres of equal electric size
ka on a DEC microVAX.

rnn _,ln

where dl.2 = r2 - rl. The translation coefficients A,,,_ and B,,_ are computable quantities which

depend on the geometry of the configuration. Further discussion of these terms may be found in

Liang and Lo (1967) and Bruning and Lo (1971).

In contrast to Bruning and Lo (1971), who use a matrix inversion method to solve the problem

of scattering by two spheres, Fuller (1987) uses an order-of-scattering approach. The incident plane

wave impinges on each of the two spheres, and excites from each of them a scattered field. These

fields propagate both toward the observer and also toward the other sphere, where further scattering

takes place. The process is iterated until the waves scattered between the particles become negligible

in amplitude. The translation-addition theorem is used to express the fields excited in one sphere in

the coordinate frame of the other sphere in order to compute the next scattering order. Fuller (1987)

found that for pairs of spheres, the order-of-scattering approach was computationally more efficient

than solving the scattering problem via direct matrix inversion. In practice, computational results

for pairs of spheres of size up to ka _" 20 are feasible, with computation time increasing rapidly as

lea exceeds _ 10. Table 10 shows the CPU time for our computation of the exact forward scattering

amplitude as the size of the spheres is increased. However, when a lossless refractive index is used,

certain sizes of particles exhibit resonant behavior. At these sizes, the order-of-scattering approach

may fail (Fuller, 1989), and the matrix inversion method (also included in Fuller's code) can be used

instead.

5.1.2 Polarization effects

Because of spherical symmetry in the case of non-interacting spheres, there is no difference in the

scattering behavior of the two possible incident polarizations. For a pair of coherently interacting
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spheres, however, the symmetry is in general broken, and we must consider the two incidence po-

larization directions separately. (Endfire incidence, or a = O, is a special case in which symmetry

is preserved.) For the Voyager ring occultation experiments, the incident wave E i is right-hand

circularly polarized:

Ei = (ell - i_1) Eoe ik",

where an exp(-icot) harmonic time dependence has been suppressed. Using this along with Eq. 11,

the field scattered by an arbitrary (not necessarily spherical) particle is

eik(r-z)

Es = Ells -4-E3.s = E0_ (SjI_II - iSx_x) •

This may easily be decomposed into a right circular component with amplitude (SII + Sz)/2 and a

left circular component with amplitude (Sll - S±)/2. During the Uranus ring occultation experiment,

the stations on the ground received only the right circular component, so that the quantity of interest

in this work is (SII -4-S±)/2. Note that, had we received the left-circular component, it could have

served as a measure of cooperative effects or non-sphericity of ring particles 1.

5.1.3 Computational results

There is a large parameter space to explore even for the simple geometry shown in Figure 35. To

fully characterize the effect of coherent interactions, it is necessary to vary the particle size, particle

spacing, the refractive index of the particles, the orientation angle ct, and the polarization of the

incident wave. In this section we present representative examples of computed complex extinction.

Figure 36 shows the exact extinction behavior of touching spheres relative to the non-interacting

solution, assuming a refractive index of m = 1.78 + 0.10i. Plotted is Q(2)/Q_2_. vs the size parameter

ka, where these quantities are as defined in Eqs. 29 and 31. For the incident circular polarization

of the radio occultation experiment, the forward scattering amplitude of interest is (Sz + Sll)/2,

where these components may be computed using Fuller's order-of-scattering approach for a pair of

spheres. In Figure 36, as well as Figures 37-39, Q(2) is computed using (Sz + SII)/2. Later figures

will show individual results for both parallel and perpendicular polarized incident radiation, in order

to investigate the effect of polarization. The format of Figure 36 was suggested by similar figures

in Borghese e_ al. (1984b), who, however, only computed values for extinction up to a size ka = 1.

1 In fact, a channel was open for the left circular polarized signal during the Saturn ring occultation experiment.

The fact that there was no signal detected in that channel was interpreted as support for the approximate sphericity

of the Saturnian ring particles (Simpson et al., 198,1).
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Two Touching Spheres
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FIG. 36:O(2)/0 (2) extinction curves for touching particles (kd = 2ka) with refractive index

rn = 1.78 + 0.10/. Seven orientations are shown, with cr ranging from 0 to 900 in 15 ° increments,

and as the size of the touching particles varies from ka = 0.1 to lea = 11.6. The four short horizontal

lines at the right of the figure indicate the predicted value for Q(2)/Q(n2}" from the simple shadowing

model described by Eq. 34, for angles a = 0 °, 15 °, 30 °, and 45°; the other three values are too close

to one another to show on this figure, but would lie at 0.971, 0.996, and 1.0 for o = 60 °, 75 °, and

900 , respectively. The line type of these short lines matches those of the extinction curves.

Therefore, many of the interesting effects for large particles reported below were not explored in

that work.

Seven curves are shown, corresponding to orientation angles c_ in steps of i5 °. Over the range

of size parameters from 0.1 to 12, the ratio Q(2)/Q(2._. differs significantly from unity, indicating

substantial coherent coupling effects. For particles with ka _ 2, such effects are important for all

incidence angles o_. However, for larger particles, the ratio is close to unity for the broadside incidence

case (a = 90°), indicating that coherent coupling is small when the wave is incident perpendicular to

the line connecting the particles. Physically, these results may be explained by the fact that, as we

shall see below, the scattering diagram for small particles is relatively isotropic, so that a particle in

any orientation "sees" the scattered field from the other particle. As particles become larger, their
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scattered fields become more and more peaked in the forward direction, resulting in cooperative

effects only when one particle lies roughly behind the other.

For larger particles, as a decreases toward the endfire incidence case, coherent effects increase, and

may be interpreted as shadowing of the second particle by the first. In fact, we may construct a simple

shadowing model in which the ratio of O(_)/0 (_-) is approximated by the projected cross-sectional

area of the front particle plus the projected unshadowed cross-sectional area of the back particle,

normalized by the total cross-sectional area of the two particles. The ratio [Q(n2_- Q(2)]/Q(2)- n.k

defines a "shadow fraction," SF, which is given by

{ 1 (cos-1 (2-_4_sin a) ) + 1 (sin (2 cos-1 (2-_4_sin a)) ) k-A-dsin a < 1

¥ 2ka --

SF = (34)

0 otherwise,

and varies from a maximum of 0.5 when a = 0 to a minimum of 0 when the back particle emerges

completely from the shadow of the front particle. Computed values of 1 - SF are shown in Figure 36

as short line-segments at the right hand vertical axis. Aithough this "geometric-optics" model is

expected to give reasonable values only when the particles are very large, the line-segments in

Figure 36 show that the simple shadowing model agrees reasonably well with the asymptotic values

of the computed exact curves, even for moderately-sized touching spheres.

Figure 37 shows results for parameters identical, except that m = 1.70 + 0.70i, to those in

Figure 36. As expected, oscillations are smoothed by the large loss in the particle; however, similar

overall agreement with the simple shadowing model persists. Maximum excursions of Q(2)/Q(n_ "

from unity are significantly decreased by the large loss in the refractive index.

We now investigate the dependence of Q(2)/Q(_._ on the separation of the two particles. In

Figures 36 and 37 the particles were touching; in Figures 38 and 39 the centers of the particles

are separated by three radii. In general, coherent coupling is somewhat reduced as the particle

separation increases, as would be expected, but significant coupling clearly remains. However, due to

the increased separation, the larger particles move out of each other's shadows for smal]er orientation

angles a, so that the large shadowing effects are confined to a smaller cone of near-forward angles.

We may also investigate the dependence of coherent coupling on the spacing between the particles

for particles of fixed size. Figure 40 shows, for a particle in the Rayleigh regime (ka = 0.1), Q(2)/Q(2].

and p(_)/Q(2) as the separation kd is increased from the point where the spheres are touching to

(2) (_)
where their centers are separated by 10 radii. P,_.i./Qn.i. is also shown for comparison. We choose
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Two Touching Spheres
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FIG. 37: Q(2)/Q_2_. extinction curves for touching particles with lossy refractive index

m = 1.70 + 0.70/. See caption of Figure 36 for details. Curves are significantly smoother com-

pared to those obtained for the less lossy refractive index of Figure 36, and maximum excursions of

Q(2)/Q_2_. are smaller as well.

to normalize p(2) by Q(2) rather than by P(_) in order to show the effect of coherent coupling on

the relative magnitude of p(2), since phase-shift per unit optical depth is the relevant quantity for

interpretation of the radio occultation measurements, p(2) and p(2! for two spheres are as defined

in Eqs. 30 and 32. Results are shown for the three angles _ = 0°,45 °, and 90 °, and for two incident

polarizations. For these small particles, coupling effects are 30% or less, and rapidly decrease as the

particles are separated by more than a few radii. For any given orientation angle, coupling effects

decrease monotonically with the separation distance. Notably, the coupling effects do not depend

on the orientation angle for the perpendicular polarization case.

One may construct a simple model for the interaction process which can shed more light on

the behavior of the curves in Figure 40 as well as other figures discussed below. In the limit of

large separation, we may use the far-field Mie solution for the field scattered by one sphere as an

excitation of the second sphere. This assumes that the second particle subtends a small angle from

the viewpoint of the first particle so that the scattered wave may be considered to be a single plane
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Spheres Separated by 3 Radii
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F]G. 38: Q(2)/Q_2J. extinction curves for separation kd = 3ka and refractive index m = 1.7S+0.10i.

See caption of Figure 36 for details.
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Fro. 39: 0(2)/O (_.) extinction curves for separation kd = 3ka and refractive index m = 1.70 + 0.70i.
"_ / -_' 13.1.

See caption of Figure 36 for details.
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FIG 40:

• n.k _ _-

as the separation is varied from touching (kd = 0.2) to kd = 1.0. The left-hand panels are for parallel

incident polarization, the right-hand panels for perpendicular polarization. In the lower panels, the
horizontal line at _ 5.23 is the non-interacting solution P(2)/O(_)

n.J./'_ n,i. •
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wave. Including only singly and doubly scattered waves, we obtain

asym . . asym,

where

_(2) ~
a,sym

[SO)(a)]2eikd(1-¢o'_')
-ikd

+ [so)(_ - _)]2_,kdO+_o,_)
-ikd

(35)

and SO)(a) is the scattering amplitude of a single isolated sphere at angle a from the exact forward

direction. _._ym_(2)represents an approximation for the perturbation to S(_!_..which is asymptotically

valid in the limit kd ---+ oo. The first term is a result of the field scattered from sphere 1 of

Figure 35 towards sphere 2, and then into the forward direction. Both a phase shift and an amplitude

reduction are introduced by this second-order scattering. The second term represents the portion

of the incident wave which is scattered first off sphere 2 towards sphere 1 and then into the forward

direction. Further scattering orders, as the scattered waves bounce back and forth between the two

spheres before being scattered into the forward direction, may easily be included; the result is:

( 1 )= i- / -ikd]2 ×

+_--_-_

l {2so)(.)s(,)(_-.)s(')(_)_'_d} ] (36)

where we have used

1 oo

l-z -Ez'_
rz----O

to sum the infinite orders of scattering.

Even though the separation of the particles in Figure 40 starts from touching particles (kd =

2ka = 0.2), some of the features of the exact solution may be understood by considering the asymp-

totic model. The scattering amplitudes [S_z)(fl)[ and [S_l)(fl)[ as a function of scattering angle fl

for Rayleigh particles are shown in Figure 41. The scattering amplitude for incident parallel po-

larization has the characteristic "figure 8" pattern of a dipole, with maxima in the forward and
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backward directions, while that for perpendicular polarization is isotropic. Thus to first order one

might expect little dependence of Q(2) on a for the perpendicular case and significant dependence

for the parallel case. In addition, one would expect the curves for the two polarizations to look

similar for a = 0, as the scattering patterns coincide in that direction. In fact it will always be the

case that S_2)(0) = S(2)(0), due to the rotational symmetry of tile endfire incidence case. All of

these characteristics are evident in Figure 40. Interestingly, however, there is significant interaction

for the incident wave polarized parallel to the scattering plane for o_ = 90 °, while the simple asymp-

totic model would predict little interaction due to the null in the scattering pattern at that angle.

This is due most probably to the fact that when kd << 1, near-field components of the dipole field

dominate, and there is a maximum of such field in the direction c_ = 900 (Ramo, el al., 1965), and

S(2) becomes an inadequate characterization of the interaction.
asyrn

Because exact scattering computations for two spheres can be significantly time consuming,

as Table 10 indicates, it is useful to determine conditions for applicability of the simple asymptotic

model. Even though the asymptotic model does not completely characterize coherent coupling effects

in all cases, it is conceptually and computationally advantageous to express the exact extinction

quantities as a sum of the corresponding asymptotic quantity and a residual term. Here we show

the residual perturbations to QMie, (Q(2) _ ,,_¢al(2s)m]/Q(2)yII n.J.' where O_)rn is defined by'

O(2)m_ (_--4a) 2- Re { ,_(a_2)m }.

The deviation of these curves fi'om unity shows the portion of the extinction behavior of two

spheres which canno! be explained by the simple asymptotic model. Figure 42 shows the result

for the small particle of size ka = 0.1 which was considered in Figure 40. Clearly, for this very

small particle case, the asymptotic model is a poor predictor for the coupling effects, as the curves

of Figure 42 do not differ perceptibly from those of Figure 40. The asymptotic model is more

successful for larger particles, however, as we discuss below.

Figure 43 shows the behavior of Q(_)/Q(2._. and p(2)/Q(2) for a particle of size/ca -- 1.0 as the

separation is increased from kd = 2 (touching) to kd = 10. Differences from unity are substantial.

For this size particle, there is significant coherent coupling for all three incidence angles. Conspicu-

ously, there are oscillations in both p(2) and Q(:) as a function of separation distance. These may

be interpreted as fringes which result from the interference of the wave scattered by only one sphere

with the wave scattered from one sphere towards the other and then toward the observer. As may

be seen in Eq. 35, the approximation to the scattered signal includes two oscillatory components,
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P endlcular

FIG. 41: Scattering diagram [S(fl)[, where/3 is the scattering angle, of an isolated particle in the

Rayleigh regime (ka = 0.1) with refractive index m = 1.78 + 0.10i, for parallel and perpendicular
incident electric fields. The field is incident from below as in Figure 35.

one with a period of kd = (2rr)/(1 - cos a) and one with a period kd = (270/(1 + cos a). Therefore

for a = 0°, we would expect to see a single oscillatory component with period kd = _r, while for

a = 90 o we would expect to see an oscillatory component of period kd = 27r. This is evident in

Figure 43, though the fact that the oscillations do not have zero mean is an indication of more

complicated coupling effects than predicted by the simple asymptotic model. (The addition of the

higher order scattering terms in Eq. 36 makes no significant difference to the oscillatory behavior

of the solution.) These oscillations are not observed for the small particles in Figure 40 because

the coupled field strength becomes negligible before the particles are separated by a large enough

distance to interfere.

Figure 44 shows the residual perturbation to QMie obtained for the parameters of Figure 43.

Interestingly, most of the oscillations are removed through this procedure, leaving relatively small

residuals, particularly for the case of perpendicular polarization. Note, however, that for the ease of

parallel polarization and a = 90 °, the subtraction of the asymptotic expression makes little change

to the curves. This is due to the fact that, for this size particle, there is a null in the scattering

diagram close to 90 ° for parallel polarization, and thus the computed asymptotic term is almost

118



_-- t*$

r. F,,

0

E _.

ol

(0 ,:.

0

0

5.1. COHERENT SCATTERING BY TWO SPHERES

ka=0.1, m = 1.78 + 0.10i

I I I

Parallel

Polarization

_ 1..._= 90"

,45 =,

I I I

0.4 0._ 0.8

kd

T--

Perpendicular

Polarization

I I

0.4 0.8 0.8

kd

FIG. 42: (Q (2)- ¢5(2)_,_asym/l'_¢n,i._/t_(2)for a pair of spheres of size ka = 0.1, refractive index m = 1.78+0.10i,

as the spacing kd is varied from 0.2 to 1.0. This figure is intended to show residual coherent coupling
effects after the simple model for interaction discussed in the text is removed. No difference is seen

between these curves and the curves forQ(_)/Q(2.1 ) shown in Figure 40, indicating that the interaction

is strongly controlled by close coupling effects. See caption of Figure 40 for further details.

zero. Clearly, interaction effects exist which depend on near rather than far fields. Figure 44 shows

that the simple model can be used effectively for this size particle to predict the coupling effect of

two particles once they are separated by more than about four radii. When they are closer than

this, the behavior needs to be computed using the exact solution. Figure 45 shows the scattering

diagram for this size particle.

Figure 46 shows curves for a particle of size /ca = 5. For spheres this large, the interference

oscillations are evident as short period variations in Q(2) and p(2). However, these are superimposed

on variations significantly larger which cannot he explained with this simple interference model. In

this case, the sensitivity of coup!ing effects to the incidence angle is clear. For a = 45 o and 90 °,

coherent coupling effects are already small when the particles are separated by just four radii.

However, for the endfire incidence case (a = 0°), there are persistent differences from the non-

interacting particles solution of 5-10% for kd as large as 50, i.e., 10 radii. This may be interpreted

as persistent shadowing of the second particle by the first. We expect that shadowing would become

negligible when the first particle fills a space much less than a Fresnel zone when viewed from the

second. In that event, the incident plane wave would effectively have filled in the shadow left by the

front particle. Since the radius of the first Fresnel zone is given by V/_/2, where d is the distance
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FIG 44: (Q(2) (5(2) _l_(2) for a pair of spheres of size ka = 1.0, refractive index rn = 1.78+0.10i,• -- ,,_ asy m I/"gni.

as the spacing kd is varied from 2.0 to 10.0. This figure is intended to show residual coherent coupling
effects after the simple model for interaction discussed in the text is removed. Notice how most of

the oscillations seen in Figure 43 have been significantly smoothed by the removal of the simple

scattering model predictions.

of the second particle from the first, this requirement implies that, for large particles, shadowing

will be insignificant when

v/Yd-/2 >> a,

or equivalently,

kd >> (ka) 2.

Thus, the larger the particle, the more persistent is the shadowing measured in units of the particle

radius. For a particle of size ka = 5, this relationship requires that the separation be significantly

larger than kd __ 25, which appears to be borne out by the curves in Figure 46. We have investigated

further the qualitative behavior of the persistence of shadowing, and find that kd >_ 2(ka) 2, or,

d_ lOa2/A (37)

provides an adequate criterion for determining the minimum separation necessary for shadowing

effects to be negligible. Note that, for a particle of this size, there is little dependence of the

extinction behavior on the polarization of the incident wave.
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0 ndicular

FIG. 45: Scattering diagram IS(/3)I, where /3 is the scattering angle, of an isolated particle with

size in the resonance region (ka = 1.0) and refractive index m = 1.78 + 0.10i for parallel and

perpendicular incident electric fields. The field is incident from below as in Figure 35.

Figure 47 shows the residual extinction after the asymptotic terms are subtracted. Tile small

scale oscillations due to interference are removed, but most of the coupling remains, particularly for

the endfire incidence case. The physical reason for the large effects in the endfire incidence case as

compared to the cr = 450 and a = 900 eases may be found in the far-field scattering diagram, shown

in Figure 48. For a particle this large, the strongest scattering is in the near-forward direction, where

the scattering behavior is not strongly dependent on polarization.

To summarize, we find that, for small particles (ka = 0.1), coherent interactions become negligible

as the particles are separated by more than one radius. The asymptotic model does not seem to be

a good model in this case. For a particle in the resonance size range (ka = 1), coherent interactions

persist for all orientations to a separation of about 10 radii, and the asymptotic model captures nmch

of the coupling behavior, particularly for separations greater than about 4 radii. Quite notably,

there is no shadowing (decrease in extinction) for such size particles in the endfire configuration.

For large particles (ka = 5), the asymptotic model fails to capture significant coherent interactions,

particularly for geometries when shadowing is significant.
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FIG. 46: Q(2)/Q_2_. and p(_)/Q(2) for a pair of spheres of size ka = 5.0 and refractive index

m = 1.78+ 0.10i, as the spacing kd is varied from touching (kd = 10.0) to kd = 50.0. The left-hand

panels are for parallel incident polarization, the right-hand panels for perpendicular polarization. In

Ptn.i./Qn.i. for non-interactingthe lower panels, the horizontal line at _ -0.04 is the constant value (2) (2)

particles. Note the relatively weak dependence of extinction on polarization.
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FIG. 47: (Q(2) _rb(2)..gasym//_Cn.i._//.-}(2)for a pair of spheres of size ka = 5.0, refractive index m = 1.78+0.10i,

as the spacing is varied from touching (kd = 10.0) to kd = 50.0. This figure is intended to show

residual coherent coupling effects after the simple model for interaction discussed in the text is re-
moved. Shorter period oscillations present in Figure 46 are removed by this procedure, but significant

differences from unity remain, particularly for the cr = 0 endfire incidence case, where significant

shadowing is observable. Note the relatively weak dependence of extinction on polarization.

Figures 40-46 have been computed assuming lossy particles (m = 1.78 + 0.10i). For comparison,

Figures 49-51 show similar results for a very lossy refractive index m = 1.70 + 0.70i. The behavior

of the curves as a function of size ka and separation distance kd closely follows the behavior of

the curves for the less lossy case. Comparing Figures 40 and 49 for ka = 0.1 shows that there

is no perceptible difference between the Q(2)/Q(n2._. curves for such small particles; the p(2)/Q(2)

curves have different absolute values, but the qualitative behavior is quite similar. More significant

differences become apparent for particle size ka = 1.0, shown in Figures 43 and 50. Deviations of

both Q(2) and p(2)/Q(2) from the non-interacting case are much smaller for the case of the very

lossy refractive index. This is probably because absorption effects significantly reduce the strength

of waves participating in the multiple scattering process. The dependence of coherent effects on the

orientation angle a is roughly the same for the two refractive indices. For particles of size ka = 5

(Figures 46 and 51), we have returned to a situation where the degree of refractive index loss has little

effect on the interaction between the particles. Presumably this is because when particles are large

enough, any small loss in the refractive index causes the absorption cross section to become almost

half the extinction cross section. The other half represents energy diffracted in the near-forward

direction. This behavior is independent of the exact loss factor. However, noticeable differences in

124



5.1. COHERENT SCATTERING BY TWO SPHERES

t', ,_ Perpendicular

Parallel

FIG. 48: Scattering diagram ]S(fl)], where j3 is the scattering angle, of a large, isolated particle

(ka = 5.0) with refractive index m = 1.78 + 0.10i for parallel and perpendicular incident electric

fields. The field is incident from below as in Figure 35.

the phase behavior persist for the c_ = 0 ° case, especially for near-touching geometry, as is evident

in the lower panels of Figures 46 and 51.

5.1.4 Averaging over scattering angle

It is useful to characterize the average coherent coupling between a pair of particles when their

relative orientation is varied over 4_r solid angle. In order to accomplish this it is necessary to

introduce a fixed reference coordinate system, as is shown in Figure 52. The z-axis in this case is

along the incidence direction (wave vector k). The angle between the line connecting the spheres

and the incidence direction k is denoted by a, as in Figure 35. The angle ¢ in Figure 52 determines

the orientation of the pair in the plane orthogonal to k. Our previous formulation of the scattering

problem above assumed a fixed reference plane containing the incident wave vector k and tlle centers

of the two particles. For changing orientations, this plane will vary, and thus the polarization of

the incident wave needs now to be referenced to the fixed coordinate system. In Figure 52, two

arbitrarily orthogonal unit vectors/5 and q in the plane orthogonal to k can be used to represent the
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m = 1.70 + 0.70i, as the spacing kd is varied from touching (kd = 0.2) to kd = 1.0. The left-hand
panels are for parallel incident polarization, the right-hand panels for perpendicular polarization. In

the bottom panels, the horizontal line at _ -0.04 is the non-interacting solution p(2)/O(2.)
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two orthogonal polarization components of the incident field (_ x/5 = t:). The p and q components

of the exact forward scattered electric field in the fixed frame can be written therefore as

Nq, - -ikr sine cost 0 S(2)(O,o) -sine cost Eqi

where the i and s subscripts refer to the incident and scattered fields, as in Chapter 4. Thus

Ep, ] elk(r-*)
-- X

Eq_ -ikr

[ sl')(o,_)¢os'¢+ s(2)(o,_)sin_+(Slh=)(O,_) - S(?)(O,_))sin+cos¢
(sl_)(o,_)-s?)(o,_))sin*cos_ ]"Sll2)(O,o)sin2O+S(x2)(O,e)eos2¢][ Ep'

Eqi

In order to obtain the average fields for a given sphere separation, we assume uniform distribution

in solid angle, hence integrate over ¢ and o to obtain

. f:. ( )eik(_-_) 1 fo da sina d+ Sl2)(0, a) cos 2¢+ ST)(0, a)sin 2¢ Ep,< Ep, > - -ikr 4_r .Io

Io )eik(r-z) 1 de sin e d¢ SII2)(0, e) sin 2 ¢ + S(2)(0, e) cos 2 ¢ Epi,< Eq, > - -ikr 4rr

where < . > indicates an average over a and ¢. The cross-polarization terms disappear in the

integration over ¢. Implicitly, Si2)(0, e) and S12)(0, a) are also functions of ka, kd, and the refractive

index m. Then we may define

<Eq,> - _ 0 <Sq(0)> Eq_

and obtain

'Jo" V +< Sq(O) >=< Sp(O) >= _ da sine

where the integration over ¢ has been performed. The corresponding average efficiency factors are

given by

<Q(2)> _ 2(ka) 2 desine +

1 J0" [Im{S(2)(O' °) + SII_)(O' e)]] (39)< p(2)> _ 4(ka) 2 dosine
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k

\

FIG. 52: General coordinate system for arbitrary positioning of pairs of spheres. If more than

one pair of spheres is to be considered, the coordinate system in Figure 35 can no longer be used.

Here we define a pair of orthogonal unit vectors (ib, q) which we use to reference the direction of the

electric field of the incident wave. The vector connecting the pair of particles is then defined by its

length and by the angles a and _bas shown.
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Figures 53-55 show the normalized average values < Q(2)/Q(_ > and < p(2)/Q(2) > for the

same particle sizes investigated in Section 5.1.3. Values are computed at increments in a of 50 and

then interpolated to increments of 0.050 for the integration, which depends on sin o_ as Eqs. 38 and

39 show. These step sizes were found to result in an error of less than 0.05% in practice.

For a particle of size /ca = 0.1, when averaged over all possible orientation angles, there is a

net increase in the extinction efficiency over that of noninteracting particles. The peak value is for

the touching case and is --_ 4%. Figure 40 shows that, while small particles may either increase or

decrease the extinction (depending on the orientation), angles closer to 90 ° than to 0 ° contribute

more significantly to the average due to the sin (_ term in the integration, leading to a net overall

increase in extinction. For a particle of size ka = 1.0 (Figure 54), we find a similar net increase in

extinction efficiency and a net decrease in the normalized phase efficiency. The peak extinction is

again for the touching geometry and is about 25% larger than for noninteracting particles. Finally,

for the case of a particle of size ka = 5.0, we find that coherent effects exhibit the opposite behavior,

i.e., they reduce the extinction efficiency by ahnost 10% when the particles are touching. In all three

cases, the average extinction approaches the value for noninteracting particles to within ,_ 1% when

kd exceeds ,-_ 5ka.

In order to qualitatively investigate the asymptotic behavior of extinction as ka becomes very

large, we also performed a similar average over orientation for a particle twice as large as the particle

in Figure 55. The result is shown in Figure 56. Interestingly, the overall behavior of this /ca -- 10

case is very similar to that of ka = 5 when the separation kd is normalized by ]ca. This suggests that

the results have converged, and further results for much larger particles can be obtained through

simple geometric scaling.

5.2 Coherent Scattering by an Assembly of Spheres

As indicated earlier, the computational demands of solving the problem of scattering by more than

one sphere are severe. Even the problem of only two spheres presents an enormous increase in

computation time over that of Mie theory. If one were to try and compute the scattering of a large

number of spheres through the exact method outlined above, the problem would become completely

unmanageable. Thus practical computational issues force one to find a way of incorporating coherent

scattering effects without solving the exact problem.
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touching (kd = 0.2) to a separation kd = 1.0. < > indicates an average over 47r. Refractive index

m = 1.78 + 0.10i. See text for averaging step sizes. The dashed line in the right hand panel

represents the constant ratio (2) (2)Pnt.i./Qn.i. for the non-interacting solution. Average Q(2) is enhanced

relative to Q(2) for all separations, but is significantly different from Q(2) only when the particles
n.I. n.l.

are closer than about 3 radii. The right-hand pane] shows that the average of p(2)/Q(2) is very
(2) (2)

slightly decreased (i.e., less phase delay) relative to Pn_ i./Qn.i, for separations _< 3 radii.
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touching (kd = 2,0) to a separation kd = 10.0. < > indicates an average over 4_r. Refractive index

m = 1.78+0.10i. See text for averaging step sizes. The dashed line in the right-hand panel represents
the constant ratio (_) (2)P_,i./Qn.i, for the non-interacting solution. Average Q(2) is significantly enhanced

relative to Q(2,) for separations less than about 4 radii. Average p(2)/Q(2) is decreased relative to
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P_.i./Qn.i, (less phase delay) for similar separations; note the much larger effect on R(:!)/Q (2) relativert.l. / n.J.

to the case ka = 5 below.
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5.2.1 The pairwise approximation

One approach is to incorporate only the pairwise coherent effects computed using the exact two-

sphere solution described above. In this model, each particle interacts coherently with every other

particle in its neighborhood, but higher order interactions are neglected. For example, for a set of

three particles, the interactions between particles 1 and 2, between particles 2 and 3 and between

particles 1 and 3 will be considered, but not the effect of 1 on 3 via 2, etc. Mathematically, for the

three particle case we may write

41_ = s_')+sJ')+_
sl__ = s_')+s_')+_,_,

(40)

where S_} ), (i # j) is the scattering amplitude S(2) for the pair of particles i and j, computed from

the exact two-particle scattering solution, and S_1) is the single-particle result computed from tile

Mie solution. The 6ij terms indicate the portion of the forward scattering amplitude which can

be attributed to coherent coupling. These terms may be found by computing S(2) using the exact

method and subtracting the Mie solutions from it. While not explicitly indicated, the value of S is

polarization-dependent. The approximate total scattering amplitude for the three spheres is written

as

_) __sl')+s_')+sJ')+_,_+_,_+_.

It is not necessary to include any extra phase terms in adding the scattering amplitudes from the

three pairs of spheres because we are computing effects in the exact forward direction.

Similarly, for a cluster of N particles, the approximate scattering amplitude is

_(N) m _ 1)+ _,j • (41)
i=1 j>i

We refer to this solution as the pairwise approximation. Implicit in this formulation is the assumption

that the most important coherent coupling effects are captured in the interaction between pairs

of spheres, and that higher-order scattering effects may be neglected. Below, we investigate the

accuracy of this assumption by computing the exact scattering amplitude of three spheres and

comparing the result to the approximate result using combinations of pairs of spheres. The size of
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the spheres considered is limited by computational demands of the three-sphere program to be less

than k-a _ 4. However, as discussed below, a more specialized algorithm can handle larger spheres

if they are constrained to lie along a line.

5.2.2 Regular clusters of spheres

We consider first regular clusters of three spheres and compute the non-interacting scattering ampli-

tude, S(nai!, the exact scattering amplitude using the three-sphere program, S (a), and the approximate

scattering amplitude of three spheres using the pairwise approximation, ._(a). For the three sphere

case, there is no longer a natural definition of 6x and 61i, as there was for the two-sphere case. Thus,

we may arbitrarily choose an orthogonal set of vectors to represent the two polarization directions.

In computing 3(3) , there are intermediate steps of computing tile forward scattering amplitude for

each pair of spheres. In these steps, it is important to add up the polarization properly, as described

in Section 5.1.4. The final result is the sum of the forward scattering amplitudes for the two chosen

polarization directions. The arrangements considered are shown schematically in Figure 57 and are

labeled a, b, c, and d. Cluster a is a broadside linear chain of three spheres, while cluster b is a

triangular array of spheres in a plane containing the incident wave vector. Cluster c is an endfire

linear chain of three spheres, and cluster d is a triangular array of spheres which lies in a plane

perpendicular to the incident wave vector.

Representative computational results are shown in Figures 58-61, which display the normalized

extinction efficiencies for different size spheres in each of the four clusters. In all configurations, the

spheres are assumed to be touching so as to maximize the effects of coherent coupling. The refractive

index used is m = 1.78 + 0.10/. The displayed quantities are Q(a)/Q(n3]. , Q(a)/Q_3_, p(3)/Q(3), and

(3) (3)/5(3)/0(a) , along with Pn'i/Qni for comparison. (The .... indicates a quantity computed using the

pairwise approximation.) Curves for the exact solution are shown with a dashed curve, and curves

for the pairwise approximation are shown with a dotted curve.

In almost all cases, the exact solution for three spheres and the approximate solution agree to

within a few percent. For example, in Figure 59, there is little difference between the dashed and

dotted curves, even as both of these curves deviate significantly from unity, indicating substantial

coherent coupling. This is true both for the Qext curves and the Pent curves; in the latter case the

dashed and dotted curves overlie one another closely. Similar agreement is also seen for clusters b

and d (both triangular clusters) in Figures 59 and 61. However, Figure 60 shows that the endfire

configuration causes more trouble for the pairwise approximation. For this case, the exact and
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FIG. 57: Four regular clusters of three spheres used for the purposes of testing the pairwise approx-

imation. The direction of the incident wave is shown; the scattered field is observed in the exact

forward direction.
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(cluster a of Figure 57). Refractive index m = 1.78 + 0.10i. Shown are curves for Q(3)/Q(3_ and

p(3)/Q(3) (dashed curves) and 0,(3)/Q(3_. and /5(3)/(_(3)(dotted curves). In the right-hand panel,
(3) (3)

P_._./Qni is shown for comparison (solid line). For this configuration of the spheres, the pairwise
approximation agrees with the exact solution to within a few percent.
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FIG. 59: Testing of the validity of the pairwise approximation for the in-line triangular cluster

(case b of Figure 57). Refractive index m = 1.78 + 0.10i. Shown are curves for Q(3)/Q_3_. and

p(3)/Q(3) (dashed curve) and Q(3)/Q_3_. and p(3)/Q(3) (dotted curves). In the right-hand panel,
(3) (3)

P_n.i./Qn.i. is shown for comparison (solid line). For this configuration of the spheres, the pairwise
approximation agrees with the exact solution to within a few percent.

137



CHAPTER 5. COHERENT SCATTERING

_C

0

v

0

UD

v.-

I I

I

l

/

C

/.

.f
/

m _

to

o

1.78 +

%'.

% ;

% _,

\ ,

I "_1 "'"

2 3

ka

0

0

1

0.101

I t .I.'

L I " :J ':

1 2 3

k8

FIG. 60: Testing of the validity of the pairwise approximation for the endfire cluster (case c of

Figure 57). Refractive index m = 1.78 + 0.10i. Shown are curves for Q(a)/Q(3_. and p(3)/Q(3)
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is shown for comparison (solid line). Differences between the exact solution for three spheres and
the pairwise approximation are significant, particularly near ka = 3, where Q(3) is non-physically

negative (resulting in rapid changes in the ratio/5(3)/0(3) ) . See text for further discussion.
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cluster (case d of Figure 57). Refractive index m = 1.78 + 0.10i. Shown are curves for Q(3)/Q(3_. and
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P_.i./Qn.i. is shown for comparison (solid line). For this configuration, the pairwise agrees with the
exact solution to within a few percent.

138



5.2. COHERENT SCATTERING BY AN ASSEMBLY OF SPHERES

approximate curves diverge around ka = 3. In fact, 0(3) is seen to be negative in a certain size

range, clearly a non-physical result. For the size range over which this occurs, the ratio /5(3)/0(3)

fluctuates wildly due to the changing sign of _(3). The reason for this discrepancy is explored in

more detail below.

To investigate the effect of the refractive index assumed, Figures 62-65 show the same quantities

for a much more lossy refractive index m = 1.70 + 0.70i. The behavior is similar, though as we have

seen in Figures 37 and 39, differences from Mie theory are generally reduced in magnitude. The

discrepancy between Q(3) and _(3) for the endfire incidence case (Figure 64) are also much smaller

than for the case rn = 1.78 + 0.10i (Figure 60).

For completeness, we also report results for the lossless refractive index m = 1.78 + 0.00i; Fig-

ures 66-69. Conclusions similar to those discussed above for refractive indices m = 1.78 + 0.10i and

m = 1.70 + 0.70i hold; however, note the change in the scale used for each figure. In Figures 66,

67, and 69, note how closely the pairwise approximation follows the exact solution. For a lossless

refractive index, Pext/Qext grows without limit as particles become very small. There is a significant

difference between the values obtained assuming noninteracting particles and the pairwise approx-

inaation; the latter remains in very good agreement with the exact solution, however. As for the

case m = 1.78 + 0.10i, the pairwise approximation has difficulty with the endfire incidence case,

particularly in the neighborhood of ka = 3.
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FIG. 62: Test of the validity of the pairwise approximation for the broadside cluster (case a of

Figure 57). Refractive index m = 1.70 + 0.70i. Shown are curves for Q(3)/Q(3? and p(3)/Q(3)

(dashed curve) and _(3)/Q(3_ and/5(3)/0(3) (dotted curves). In the right-hand panel, P_.i/Qn.i.(3)(3) is

shown for comparison (solid line), For this configuration of the spheres, the pairwise approximation

agrees with the exact solution to within a few percent.
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and (_(3)/Q(_!. and /5(3)/_(3) (dotted curves). In the right-hand panel, P_.i./Qal is shown for

comparison (solid line). Larger differences between the exact and the approximate solution are seen

here than for other configurations, but the discrepancies are much smaller than for the corresponding

configuration with a less lossy refractive index (Figure 60).
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Fro. 65: Test of the validity of the pairwise approximation for the perpendicular-triangular cluster

(case d of Figure 57). Refractive index m = 1.70 + 0.70i. Shown are curves for Q(a)/Q(3),.i. and

p(a)/Q(3) (dashed curve) and (_(3)/Q(3) and /5(3)/_(3) (dotted curves). In the right-hand panel,
n.J.

(a) (a)
P_.i./Qn.i. is shown for comparison (solid line). For this configuration of the spheres, the pairwise
approximation agrees with the exact solution to within a few percent.
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FIG. 66: Test of the validity of the pairwise approximation for the broadside cluster (case a of

Figure 57). Lossless refractive index m = 1.78+0.00i. Shown are curves for __O(3)/O(3).__n,i,and p(3)/Q(3)

(dashed curve) and _(3)/Q(3_ and/5(3)/_(3) (dotted curves). In the right-hand panel, p(z)/Q(3) is
• " n.l./ n.i•

shown for comparison (solid line). For this configuration of the spheres, the pairwise approximation
agrees with the exact solution to within a few percent.

A..=

0

0

ql"

\

k

0 P

1

\

_,_

I I

2 3

ka

m= 1.78 + 0.001

¢o
T-

A

o o

¢M

o4
!

\\

I [ I

1 2 3

ka

FIG. 67: Test of the validity of the pairwise approximation for the in-line triangular cluster (case b

of Figure 57). Lossless refractive index m = 1.78 + 0.00i. Shown are curves for Q(3)/Q(n3}• and

p(3)/Q(3) (dashed curve) and O(3)/Q(z_. and/5(3)/_(3) (dotted curves). In the right-hand panel,
(3) (3)

P_n.i./Qn.i. is shown for comparison (solid line). For this configuration of the spheres, the pairwise
approximation agrees with the exact solution to within a few percent.
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FIG. 68: Test of the validity of the pairwise approximation for the endfire cluster (case c of Figure 57).

Lossless refractive index m = 1.78 + O.OOi. Shown are curves for Q(3)/Q_3_. and p(Z)/Q(3) (dashed

curve) and _(3)/Q_3_ and /5(3)/(_(3) (dotted curves). In the right-hand panel, P(3)/0(3) is shown
i3.l. / "_ n,J.

for comparison (solid line). Once again, the endfire configuration causes the most difficulty for tile

pairwise approximation, and non-physical results are apparent in the neighborhood of ka = 3, where
Q(3) is negative•
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FIG. 69: Test of the validity of the pairwise approximation for the perpendicular-triangular cluster

(case d of Figure 57). Lossless refractive index m = 1.78 + 0.00i. Shown are curves for Q(3)/Q_3_ and

p(3)/Q(3) (dashed curve) and _)(3)/Q(3)_.i and/5(3)/Q(3) (dotted curves). In the right-hand panel,

p(3)/Q(3)n.,.,n.i is shown for comparison (solid line). For this configuration of the spheres, the pairwise

approximation agrees with the exact solution to within a few percent.
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5.2.3 Behavior of very small particles

There are some aspects of the curves of Figures 58-69 which can be understood in simple physical

terms. As particles become much smaller than a wavelength, their extinction cross section no longer

depends on their shape, but only on their volume (Rayleigh scattering; v., e.g., Bohren and Huffman,

1983). This is because the incident wavefront reaches all parts of the scatterer essentially in phase.

From the discussion in Section 4.2.1 for small particles,

Re{S(' (lossless)} -6 ]

ae{S(l (lossy)} a3 -3 / ka 0,Ira{S(')} c( a3_ -3

i.e., for lossless particles the real part of the scattering amplitude is proportional to the volume

squared, while for lossy particles this quantity is simply proportional to the volume. We would thus

expect that, for a closely packed collection of n very small lossless particles, the real part of the

forward scattering amplitude would be n 2 times that of an individual particle. Since in Figures 58-

69 all curves are normalized by Q(n.), where Q(") = nQ('), we might expect that, as the particles
n,l. n.i.

become small, Q(3)/Q_3_ would approach 3 when considering the problem of three lossless particles.

In fact, this is approximately the case, as shown in Figures 66-69. For lossy particles, on the other

hand, the real part of the scattering amplitude is proportional to volume rather than volume squared,

so we would expect the ratio of Q(3)/Q(3}. to approach unity. Figures 58-65 show this to be the case

as well.

Similarly, we ,nay investigate the behavior of the P/Q curves in the Rayleigb limit. For both

lossless and lossy particles, the imaginary part of the scattering amplitude is proportional to the

volume. Therefore, for very small particles, the close packing of the particles should not affect the

total imaginary part of the scattering amplitude. In this case, p(3)/Q(3) asymptotically approaches

P(')/Q('), which for lossy particles is given by

p(3) p(1) Re [(m 2 - 1)/(m 2 + 2)]

Q(3) (ka ---*0) ---* _-_ -- 2Im [(rn 2 - 1)(rn 2 + 2)]"

For m = 1.70 + 0.70i this value is 0.83; for m = 1.78 + 0.10i it is 5.27. These values are in good

agreement with the results in Figures 58-65. For lossless particles, P/Q systematically increases as

the particles become very small, because Q decreases much more rapidly than P (see Figs. 66-69).
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5.2. COHERENT SCATTERING BY AN ASSEMBLY OF SPHERES

5.2.4 Endfire incidence and the shadowing behavior of large spheres

In the top half of Figure 60, comparison of the curves corresponding to the exact solution and the

pairwise approximation shows that the two curves diverge around ka = 3. In fact, the pairwise

approximation in some cases yields negative ()(a) which is unphysical. Reference to Figure 36 shows

that the ratio Q(2)/Q(n2._" has a prominent minimum near ka = 3. Therefore the pairwise interaction

model appears to overestimate the interaction, resulting in a negative Q(3).

We may investigate this particular orientation in more detail using a specialized algorithm devel-

oped by Fuller (1987) for computing scattering by more than two spheres which are constrained to

lie on a line. Due to the simplified geometry of this eonfiguration, the translation-addition theorem

of spherical harmonics can be adapted so as to reduce program array sizes significantly, and larger

spheres than the previous limit of ka = 4 may be considered. Since the endfire incidence case is the

most troubling from the standpoint of computing the extinction using the pairwise approximation,

this simplification is extremely helpful.

Figure 70 compares the exact ratio Q(5)/Q_S) to the pairwise approximation Q(5)/Q(5_ for five

spheres in the endfire configuration, over a size range from ka = 0.1 to 8. Since the endfire incidence

case is most sensitive to coherent effects, this is a severe test of the approximation.

First consider the left-hand panels, which show the results including all interactions between

particles as described in Eq. 41. As for the case of three spheres, there is a negative value for 1_(5)

near ]ca = 3. From this point on, as ka increases, _)(s) remains significantly smaller than Q(S) often

becoming smaller than zero. Clearly the pairwise approximation is having significant difficulty with

this configuration.

Recall that Figures 36-39 showed that, for particles larger than approximately ka = 5, a simple

geometric model of shadowing was a fairly accurate predictor of the total extinction of two particles.

We may use this simple model to gain some insight into the reason for difficulties with the endfire

configuration. The geometric shadowing model predicts that, for five particles in this configuration,

the ratio Q(5)/Q(_5_. should be approximately 0.2, as only the front particle is unshadowed. The

pairwise interaction model, however, considers all of the interactions between every pair of particles--

ten interactions in all. In considering each of these ten pairwise interactions, approximately one

cross-sectional area will be removed through shadowing. Therefore it is not surprising that the

pairwise approximation results in non-physical (_(s) for large particles. The question is how to

improve the approximation. The problem results from assuming that particle 1 interacts with

particle 5, even though particles 2, 3, and 4 lie between them. One possible solution is to consider
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only the interactions between adjacent pairs of particles, that is, between particles 1 and 2, 2 and 3,

3 and 4, and 4 and 5. Our simple model predicts that this will result in removal of approximately

four cross-sectional areas due to shadowing, resulting in a final ratio of _(5)/Q(5_. of approximately

0.2. The right-hand panels of Figure 70 show the result of applying this modification of the pairwise

approximation. Clearly, the agreement between Q(5) and Q(5) is greatly improved relative to the left-

hand panels. Note that the ratio Q(5)/Q(5._. approaches approximately 0.3 rather than the value of 0.2

predicted by the geometric model. Even so, the pairwise approximation with shadowing taken into

account approaches essentially the same value as the exact solution. Therefore, it appears that the

important issue of shadowing between particles must be carefully considered when using the pairwise

approximation. The results of Section 5.2.2 showed that the nominal pairwise approximation worked

very well when no more than two particles lay along the incidence direction. This is because two-

particle shadowing effects are automatically included in the approximation. It is when more than

two particles lie along this line that the approximation breaks down.

We may, for completeness, consider the case of a broadside arrangement of five spheres. Our

previous work indicates that this arrangement should not cause the pairwise approximation any

difficulty, and Figure 71 shows that this is indeed the case. Both the nominal pairwise approximation

of Eq. 41 (left panels) and the adjacent-pairs-only formulation (right panels) show that the exact

and the approximate solutions agree to within a few percent except in the resonance region, where

differences reach _ 10%.

5.3 Extinction by a Closely-Packed Monolayer

The ultimate goal of characterizing coherent coupling effects is to model the response of a crowded

medium to an incident plane wave. Our aim is to answer the question: "In what ways does a ring

filled with closely-packed particles extinguish and scatter radio waves differently from a ring in which

the same particles are well-separated?" Full analysis of this problem remains an ambitious goal for

future work; below we will limit our attention to the idealized case of a monolayer distribution of

identical particles.

In order to simplify the computational complexity of the problem, we make the assumption that

pairwise coherent coupling effects are the most important; thus we neglect interactions of order higher

than 2 among the particles in the medium. Section 5.2 explored the validity of this assumption when

applied to clusters of three spheres in various configurations and over a range of sizes up to ka = 4.

It was found that the pairwise interaction model was remarkably good at predicting the extinction
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m = 1.78 + 0.10i
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FIG. 70: Comparison between exact and pairwisc approximations for extinction by five spheres in

an endfire configuration. The dashed curve is the exact solution; the dotted curve is the approx-
imate solution. The solid curve in the bottom panels shows the non-interacting-particles solution

(5) (s)Pn_.i./Qn•i.' The left-hand panels are computed using the nominal pairwise approximation of Eq. 41
the right-hand panels are computed using a modification of the approximation which considers only
the interactions between adjacent pairs as described in the text. Significant improvement is clearly

evident in the latter case.
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FIG. 71: Exact and pairwise approximations for the extinction of five spheres in the broadside

configuration. The dashed curve is the exact solution; the dotted curve is the approximate solution•

P_ni./Qn.i.. The left-handThe solid curve in the bottom panels shows the non-interacting solution (5) (5)

panels use the nominal pairwise approximation of Eq. 41; the right-hand panels use a modification

of the approximation which considers only the interactions between adjacent pairs as described in
the text. For broadside incidence, unlike the endfire incidence case considered in Figure 70, there is

little difference between the two formulations of the approximation.
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behavior of three spheres, except when the particles are aligned in the endfire configuration. Further

study of this particular configuration for up to five spheres and up to a size ka = lO revealed that

a simple geometric shadowing model explained much of the discrepancy between the exact, and tile

approximate solution. We thus feel reasonably confident that tile pairwise apt)roximation will yieh]

useful results for the extinction behavior of a random ensemble of spheres.

Here we wish to characterize the extinction by a monolayer of closely-pack_:d particles, as a

fimction of particle size, packing fraction, and incidence angle B. %% proceed in a sequence of steps.

First, we describe the distribution of particle positions in the layer. When a medium is crowded,

correlations between particle positions occur and must be considered in the solution of the problem.

Second, we determine an expression for the forward scattering amplitude of a single particle in such

a layer. This includes a term that represents the response of the particle to the incident plane wave

in the absence of all other particles, plus a perturbation term that represents coupling effects due

to the presence of other particles in its neighborhood. The scattered field from the entire layer is

then found by coherently sumnaing all scattered fields in a manner analogous to that used for the

noninteracting particles case of Section 4.2.2, in which the monolayer model was introduced.

5.3.1 Pair correlation function

When considering a medium in which the scattering objects are positioned far apart from one

another, it may be assumed that the location of any one particle is independent of the location of

other particles in its neighborhood. However, as the medium becomes crowded, the particles begin

to cluster in locally send-periodic structures. Under such conditions, the position of a given particle

is correlated to those of its neighbors. In order to compute the scattering behavior of the ensemble,

it is important to include this effect in the formulation of the probleln.

For spheres and disks in a crowded layer, this is a well-studied problem. Over the last. twenty

years, various models of the spatial distribution functions have been developed and compared to

computer simulations of positions of hard (i.e. non-interpenetrating) spheres and disks. A brief

definition of terms follows below; a complete discussion of distribution functions may be found in

many books on statistical mechanics and the theory of simple liquids (see, for example, tlansen and

McDonald, 1976).

Suppose we have a monolayer composed of N identical hard disks (or spheres) randomly dis-

tributed over an area A. Let r i be the random vector defining the position of particle i relative to

some origin, and let dr i be an incremental area. around r i. Then let p(n)(rl, ..., rn) be the joint
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probability density of the n disks located in drl,... ,drn, irrespective of the positions of disks

n -_ 1,..., N (McQuarrie, 1976). Then we define the correlation function g(n) by

p(n)(rl, ..., rn) = png(n)(rl,..., rn),

where p is N/A, or the "average" number of particles per unit area. Note that p(1), which is the

probability of any particle being at a particular position, irrespective of the location of all oiher

particles in the medium, must be equal to p if the medium is homogeneous and isotropic. In the

special case of a sparse distribution, the positions of the particles are independent. Then p('_) -- p'_,

and g(n) would therefore be equal to unity.

In this work, we consider only pairwise coherent scattering effects, so we may limit our attention

to the function g(2), known as the pair-correlation function. In addition, we assume that all of the

particles in the layer are the same size. In a homogeneous and isotropic monolayer composed of

disks (or spheres), g(2) depends only on the separation distance of the two particles, therefore

g(2)(r I , r2) = g(2)(Ir I - r21 ) = g(2)(rl_ ).

We simplify the notation by writing g(2)(rl_ ) as g(r), where r = rl_.

Asymptotically, as r --, 0, g --* 0, since the particles cannot penetrate each other, and as r --* oo,

g _ 1, since the particle positions become uncorrelated. Relative to the position of any given

particle, the number of particles between r and r q- dr is given by pg(r)27rr dr.

The model for g(r) that we use is a virial expansion in number density p given by Chae et al.

(1969) under the so-called BGYM (modified Born-Green-Yvon) approximation, namely

= [1+ gl(r)p + + g3(,');3+...],

where 7"is the distance between the centers of the particles, normalized by the diameter of a particle,

k is Boltzmann's constant, T is the temperature, and ¢(r) is the potential function. The latter two

quantities are important for describing the physics of interaction between fluid molecules. For the

hard disk model considered here, ¢(r) is given by
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¢(r) = oo r _ 1

¢(r) = 0 r > 1

and the term exp[-&(r)/(kT)] is simply a step function at r = 1.

The number of particles per unit area, p, is related to the packing fraction f l)y p = ,lf/_,

assuming a normalized particle diameter of unity. The function gl(r) is given by Chae el al. (1969)

to be

11

gl(r) = 2cos-l(_r)--(_r)(4--r2) 1/2 O<r<2

gl(r) ---- 0 r > 2

and numerical values of g2 and g3 as a function of r are provided. We use these values to compute

g2(r) and g3(r) numerically using spline interpolation. The results for several packing fractions are

shown in Figure 72. For small packing fractions (f _ 0.1), there is little correlation between particle

positions, and g(r) __ 1, r > 1. As the packing fraction increases, g(r) peaks near the minimum

separation distance r = 1 because, under close-packing conditions, the most likely location for the

nearest neighbor is the touching geometry. This leads also to a depletion in the now relatively

excluded area r "1.5-2. As the maximum packing density (f = _r/2v_ _ 0.91) is approached,

g(r) approaches a series of delta functions at the spacing corresponding to a hexagonal arrangement

of disks, with peaks at r = 1, v_,2, etc. For packing fractions less than 30%, correlations are

insignificant beyond approximately three particle diameters, as Figure 72 demonstrates.

5.3.2 Extinction by an individual particle

We now compute an approximation to the forward-scattering amplitude for a particle embedded in

a monolayer containing many particles. If the medium is homogeneous, then on the average the

neighborhood of one particle must look the same as the neighborhood of every other particle. For

simplicity, we assume that all particles are of identical size and refractive index and calculate Sp_t,

the average perturbed forward scattering amplitude of a single particle. Spin includes both the

unperturbed term S (1) as well as coherent coupling terms that model the effect of other particles

in the neighborhood. In Section 5.2.1, we have characterized such coupling in terms of 5ij, where

S_2) = S_ 1) + S_ 1) + _ij is the exact solution of the (i,j) pair of particles. Under the pairwise

approximation, we may use this result to express ,Spe_t as
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FIG. 72: Radial distribution function g(r) using expansion of Chae et al. (1969) for the modified
Born-Green-Yvon formulation. Radius r of the horizontal axis is normalized by the diameter of the

particles; therefore r = 1 corresponds to the minimum separation distance. Curves are shown for

area packing fraction f between 0.01 and 0.30. Little correlation between particle postions is seen

until the packing fraction exceeds _ 10%.

f0 _ f0 2" 6(r, 7; B)Spert = S (1) -_ drrpg(r) d7 2 '

where we have dropped the index i since the result applies to any particle. Note that the integral

represents an average over all the perturbation terms _ (adjusted by a factor of two to divide the

perturbation equally between the two particles involved), weighted by the number of particles at

each location. This weighting is computed using the correlation function g(r) discussed above. The

variables r and 7 represent the coordinates of the perturbing particle relative to the particle of

interest in a cylindrical coordinate system where z = 0, while B is the angle between the incident

wave and the plane z = 0 containing the particles.

In order to compute $, we first convert the position (r, 7) in the plane of the layer into positions in

the reference frame of the scattering problem, a transformation which depends on B. If the original

coordinates of the point in the plane of the layer are (r, 7,0), then the coordinates in the frame
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shown in Figure 52 are (r, a, ¢), where

= cos-' (cos B cos 7)

(tanT_
¢ = tan-I \sinB]

(42)

and 7 is measured from a unit vector u0, which is tile projection of k onto the layer. ¢ is measured

from the projection of u 0 onto the plane perpendicular to k. Replacing the number density p by

f/_ra 2, and using non-dimensional length scales, we obtain

fifo n f02. 5(kr'7;B) (43)Spe_t = S (1) + r:(ka)_ d(kr)(kr)g(r/2a) d 7 2 '

where R is chosen to be large enough for the coupling term 5 to be negligible.

To reduce the computational complexity, we construct a table of S (_) for the two polarizations

on a grid in a and kd. Once the table is constructcd, other values corresponding to intermediate a

and kd are found through interpolation. In this way, one table may be used for any packing fraction

and any ring opening angle B. In addition, the values stored are S (2) - ,-,asym_(2), which removes much

of the fine-scale oscillation as a function of kd and a. After interpolation, _'(2y)m is added to the

retrieved result. The grid is spaced in 20 in a and 0.2 in kd. For the smallest particle size (ka = 0.1),

an increment of 0.05 is used for kd. These step sizes are found to result in maximum errors between

computed and actual S (2) of less than 0.1%.

5.3.3 Optical depth and phase shift

To obtain the total forward scattered field, we follow procedures similar to those in Section 4.2.2,

but in place of the forward scattering amplitude of a single particle S(0), we use the perturbed value

Spert(0) computed from Eq. 43. In a manner exactly analogous to that of Section 4.2.2, we find that

E : E i 1 -- Spert(0) 71 _-

1 .2f Spert (0)r = -2p0 In (k-a-_p0 (45)

¢_ = tan- 1 ( -hn{S_t(0)} "_ (46)po(ka)_/2I - Re{Spert(0)} J"

We use Eqs. 45 and 46 to investigate the dependence of r and ¢_ on packing fraction f and

incidence angle B. Only two representative sizes are considered: ka = 0.1 (small particles) and

ka = 5 (large particles). The integral in Eq. 43 is performed over 2(ka) < kr < lOka and the

increments used are indicated in the captions of Figures 73 and 76. Figure 73 shows the optical
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depth of a monolayer, normalized by the optical depth assuming non-interacting particles. Deviations

of this value from unity indicate significant coherent interaction. We present results for incidence

angles B ranging from 90 ° to 30 °. At incidence angles smaller than 30 °, shadowing effects begin to

invalidate the pairwise approximation. To illustrate why, we may construct a model which explicitly

relates the packing fraction f to the closest particle distance by arranging the particles on a hexagonal

grid, the most efficient packing arrangement. In this case, the relative interparticle distance is given

by

d/a-- _/

2_

v f"

Using this relation, the shadow of one particle will be cast on a second particle when the incidence

angle B satisfies

sin B _< 1.050V/]. (47)

The angle B at which the shadow is lengthened so that two particles lie in the shadow is given by

sinB < o.52 vz]. (48)

Therefore "double-shadowing" as defined by Eq. 48 occurs only for incidence angles B < 30 °.

For B = 20 °, two particles will be shadowed for filling fractions greater than _ 42%, and for

B = 10 °, such a situation occurs for f_> 11%. For an incidence angle of 6° (the ring opening for the

radio occultation by Saturn's rings), such double-shadowing occurs for all filling fractions greater

than --, 4%. Note that "single-shadowing" as defined by Eq. 47 does not invalidate the pairwise

approximation, as such an effect is included in our formulation. For the reader's convenience,

Figure 74 gives the lower limit on B for any given f as expressed by Eqs. 47 and 48; f __ 0.91 is the

maximum possible packing fraction for the hexagonal configuration.

Figure 73 shows that, for small particles, the optical depth of the layer r slightly decreases as

B is increased, but, however, is always larger than rn.i.. Figure 40 suggests that this is because, for

particles of size ka = 0.1, coherent interaction is strongest in the broadside incidence orientation

(a = 90°), at least for the parallel polarization case.

5.3.4 Shadowing model

For large particles, deviations of r/rn.i, are very small for incidence angles B = 900 a,ld B = 60 °. As

B decreases further, r/rn.i, decreases for large packing fractions. This suggests that shadowing is the
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FIG. 73: Variation with packing fraction of the optical depth of a monolayer of identical particles

using the pairwise approximation (Eq. 45), normalized by the optical depth assuming non-interacting

particles. Packing fraction is varied from 0.01 to 0.30, and incidence angles of 90 °, 60 °, 45 °, and

300 are shown• The integral of Eq. 43 was performed with an increment of 20 in 7 and increments

of 0.01 and 0.1 in kd for the ka = 0.1 and ka = 5.0 size particles, respectively.
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than those defined by tile curves at any given f, shadowing occurs (see Eqs. 47 and 48). Curves

terminate at f _ 0.91, which is the maximum packing fraction 7r/2v_ for the assumed configuration.

cause of such a decrease. It is interesting in this case to compare the ka = 5.0 curves of Figure 73 to

those obtained from simple geometric consideration of the projected fractional area covered by the

particles. As we have seen in Section 4.2.2, when coherent interaction effects (including shadowing)

are neglected, the relative intensity I/Ii transmitted through a monolayer of large particles is given

by

I [1 - PA(1) 2

I-7 I '

where A (1) is the area of one particle, and Q_xt is assumed to be equal to two (ka >> 1). We may

modify this to include geometric shadowing by writing

I_ 1- err
z,- -770 '

where the "effective area" A_ 1) is decreased by the mean fractional area shadowed by other particles.

For a situation in which double-shadowing does not occur, A_r ) is given by:
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([2o/.,o,[2. )A_I) = AO ) _ A(1) -- SF(r, 7; a)pg(r/2a)rdrd7 ,
\J2a ,10

(49)

where SF(r, 7; a) is computed from Eq. 34 along with Eq. 42, and g(r/2a) is the radial distribution

function discussed above. Note that SF in Eq. 49 corresponds to -6/2 in the pairwise formulation

of Eq. 43. The integral over r is performed over the range 2a < r < 2a/sin B, in which shadowing is

possible. Figure 75 compares the result of Eq. 49 to that of the pairwise approximation for ka = 5.

In all eases, the pairwise formulation shows more pronounced effects of the coherent interactions

(deviation from unity) than can be explained by simple geometric shadowing. Figure 36 indicates

that this is because, in general, the exact solution for two spheres predicts a somewhat smaller

extinction cross section than that predicted by Eq. 34; that is, coherent effects are not simply

limited to geometric shadowing. The exception to this general rule is for _ = 0, where the exact

solution predicts larger extinction than simply one-half of the noninteraeting particles value.

Figure 76 shows the phase per unit optical depth of the layer, normalized by the non-interacting

result. Once again, the curves for small particles (ka = 0.1) show relatively little dependence on

the incidence angle, while the curves for large particles (ka -- 5.0) are strongly dependent upon B.

For such large particles, the coherent phase is smaller under the pairwise approximation than under

the non-interacting particles assumption. For such particles, we find that the phase is advanced by

a smaller amount.

5.4 Summary and Discussion

In this chapter, we have investigated the effect of coherent interaction on the extinction behavior of

pairs and ensembles of spheres. Results have been compared to those obtained under tile "classical"

assumption that such coherent effects are negligible.

We began with a study of the problem of two spheres. This simple case is a good starting point,

both because of its relative computational simplicity, and, perhaps more importantly, because it

allows us to develop a physical intuition about coherent interaction effects and their dependence

on size, refractive index, orientation, and particle spacing. This intuition can serve us well in

interpreting observations of planetary rings.
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5.4.1 Coherent interaction effects

Here we summarize some of the important results obtained from the study of pairs and ensembles

of spheres. In the limit of particles small compared to the wavelength, we have found that coherent

interaction effects are important for all orientations of the pair relative to the incident wave. The

response to an incident wave polarized perpendicular to the plane containing the incidence direction

and the particles was found to be completely independent of the pair's orientation; the response

to a parallel polarized wave was found to depend strongly on orientation. Overall, the strongest

interaction was found to exist when the pair is oriented in the broadside configuration.

An asymptotic model for coherent interactions was formulated solely in terms of the far-field scat-

tering amplitudes of individual particles. For small particles, this model was found to predict some

of the observed behavior, for example the lack of dependence on orientation for a perpendicularly-

polarized incident field. However, it failed to predict the strong interaction in the broadside config-

uration. This is presumably because, for dipoles (an accurate model for Rayleigh scatterers), while

the far-field response to a parallel-polarized field in the a = 900 direction is very small, there is a

maximum in the near-field in that direction.

For particles in the resonance region, where the size of the particle is comparable to the wave-

length, coherent effects can increase or decrease the extinction by a sizable percentage. Coherent

interaction effects are important for all orientation angles, and persist to separations of approxi-

mately 10 radii. The asymptotic model was found to describe much of the coherent interaction

once the particles were separated by approximately 4 radii. Interestingly, for this size particle, no

shadowing, i.e., no persistent decrease in extinction in the endfire configuration, is observed.

For particles large compared to the wavelength, we found that coherent interactions are only

significant when the orientation angle _ is small. In fact, a simple geometric shadowing model was

found to accurately describe the change in Qext for both touching and slightly separated particles

of size ka _> 5. The persistence of the shadow in the c_ = 0 direction was investigated, and both

the exact computations and a theoretical consideration of the Fresnel zone size relative to the size

of the particle indicated that coherent effects persist until the separation between the particles is

_> 10a2/A.

We also computed the complex extinction for two particles averaged over orientation, as a func-

tion of particle separation. We found that, regardless of the size of the particle, average coherent

interactions become negligible when the particles are separated by more than about five radii. This
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implies that "classical" noninteracting particles (radiative transfer) models are valid for volume

packing fractions less than about 1%.

We next investigated the validity of a "pairwise-interaetion" model developed to characterize the

coherent interaction between more than two particles. This model assumes that the most important

interactions are those between pairs of particles, and that higher order interactions are negligible.

We compared the pairwise approximation to exact computations of the complex extinction for three

spheres in four representative arrangements. Sizes up to ka = 4 were investigated; this limit was

set by the computational complexity of the exact three-sphere problem. We found that the pairwise

model was a good approximation to the exact behavior, except when the spheres are arranged in the

endfire configuration. Further analysis of this particular arrangement indicated that incorporating

the concept of shadowing into the pairwise formulation removed much of the discrepancy.

We then computed the extinction of a monolayer of identical particles, using the pairwise for-

mulation. We chose two representative sizes, ka = 0.1 and ka = 5.0, to represent small and large

particles, respectively, and investigated the effect of packing fraction and incidence angle on optical

depth and phase. For the small particles, tile interaction is relatively independent on the incidence

angle, and the optical depth of the layer increases monotonically with increasing packing fraction f

over the range f _< 0.3. The phase per unit optical depth decreases slightly with increasing packing

fraction, and is similarly insensitive to the incidence angle. For large particles, as one might expect

from a geometric shadowing model, the optical depth of the layer is strongly dependent on the inci-

dence angle, decreasing as tile incidence angle becomes more oblique. This is presumably due to a

fraction of the particles in the layer hiding behind one another, and therefore no longer contributing

to the total extinction of tile layer. The phase per unit optical depth is also a strong fimction of

incidence angle, decreasing as the incidence angle decreases. The optical depth for l,'ct = 5 was also

compared to a geometric shadowing model which considers the transmitted intensity to depend oll

the nnshadowed area of particles. The pairwisc formulation was found to consistently yield some-

what smaller optical depths, indicating that coherent interaction effects are not limited to simpl_"

geometric shadowing effects.

5.4.2 Implications for the Uranian rings

One of the prime reasons for undertaking the study of coherent interactions was the anomalous

phase delay behavior of the inner Uranian rings. The idealistic model of a monolayer of identical

particles employed here does not appear to suggest that such phase effects result from close packing;
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however, a definitive conclusion cannot be drawn until a three-dimensional model incorporating

a size distribution of particles is investigated. Results obtained here do indicate that coherent

interactions can have a significant effect on the optical depth. Relative to the noninteracting case,

small particles (ka < 2) increase the optical depth for all incidence angles; large particles (ka > 5)

decrease the optical depth, particularly as incidence angles become more oblique, primarily because

of geometric shadowing. Only a limited range of packing fraction, f _< 0.3, was explored, however.

These results have implications for interpretation of the Saturn radio occultation data, where the

ring opening angle was only 5.9 °, as well as for comparison of radio to other Uranian ring occultation

data at more oblique incidence angles, as we discuss further below.

As stated in Section 4.4, comparison of integrated optical depths obtained here to those at shorter

wavelengths generally supports the conclusion that the Uranian rings are relatively depleted in small

particles. However, most of the measurements are noise limited. The best measurements are those

of Ring e, and there are some perplexing indications that the integrated optical depth at the much

shorter UVS and PPS wavelengths is actually smaller than that at radio wavelengths. Specifically,

Holberg et al. (1987) find that the integrated optical depth is 80-85 km when corrected for the factor

of two due to diffraction of the radio waves. This is significantly smaller than the value of _ 95 kin

reported here. Lissauer (1989) finds that PPS integrated optical depths are closer to the UVS than

to the radio values. Although this is certainly good evidence that there cannot be too many small

particles, the fact that the shorter wavelengths show smaller optical depths may well be a clue to

some other unmodelled process.

One possibility is that shadowing effects due to incidence angle and wavelength are more im-

portant for the UVS and PPS occultations than for radio. The ring opening angle for the radio

experiment was 81.5°; for the UVS and PPS observations it was only 27.1 ° for the a-Sagitarii oc-

cultation and 36.80 for the/?-Persei occultation (Colwell el al., 1989). We have seen that, for large

particles (and indeed compared to UVS and PPS wavelengths the particles in Ring e are probably

very large), optical depth decreases when coherent effects are included. To illustrate, Figure 77

compares, for particles size ka = 5, the normalized optical depth as a function of packing fraction

for B = 81.5 ° (radio occultation) and for B = 27.1 ° (PPS and UVS (_-Sagitarii occultation). For the

almost fully-open 81.50 case, there is little coherent interaction for any packing fraction up to 0.3.

However, for the more oblique incidence direction of 27.10 , shadowing decreases the optical depth

significantly. Although, as we have discussed in Section 4.3, a monolayer is a poor model of Ring ¢,
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qualitatively Figure 77 suggests that shadowing effects may be much more important for the more

oblique occultations.

Another possibility is that particles in the centimeter size range would appear very large at PPS

and UVS wavelengths, but would be in the resonance size range at radio wavelengths. We have

seen that these two size ranges affect the extinction in opposite directions, and could result in larger

extinction at the longer wavelength, in contrast to the classical noninteracting particles models.
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FIG. 77: Comparison of r/r_i, for incidence angles of 81.50 and 27.1 °, for a monolayer of large par-

ticles (ka = 5). These incidence angles are the ring opening angles of the radio and the cr-Sagitarii

PPS and UVS occultations, respectively. Significant shadowing is observable in the more oblique in-

cidence case; this effect may possibly explain the puzzling observation that integrated optical depths

for Ring e appear to be smaller for the shorter wavelengths than for the microwave wavelengths
discussed in this work.
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Chapter 6

Summary and Conclusions

In this work we have shown how data collected during the Voyager 2 radio occultation of the Uranian

rings have contributed to a number of areas of study, many of which were not even anticipated ill

the original Voyager planning. If we recall the expectations for the radio occultation experiment at

the time of the Voyager launch, diffraction-reconstruction was not part of the initial plan, in part

because the diffraction-limited resolution of about 15 km was thought to be adequate to see all

of the important structure of the 70,000 km wide ring of Saturn. Only when the narrow Uranian

rings were accidentally discovered in 1977, and when Voyager 1 reached Saturn in 1980, did the

concepts of narrow ringlets, density and bending waves, and extremely sharp edges enter the collec-

tive consciousness of planetary scientists. Therefore, much of the discussion above could not have

been foreseen on the day of the Voyager 2 launch on September 5, 1977. A study of particle sizes

in Saturn's rings was expected to be undertaken with the dual wavelength radio data; however, we

may again recall that until Voyager 2 actually passed behind the rings of Uranus, it was not known

whether the radio signal would be affected by the particles there. The only previously published

estimate of particle sizes in the Uranian rings implied typical radii in the micron size range (Pang

and Nicholson 1984). Such particles would have been completely invisible to the radio wavelengths.

This author was present when the reM-time monitors showed the radio signal drop over 20 dB when

Voyager passed behind Ring c, and it was certainly exciting to see a leap in the amount of knowledge

take place in a split second. It can thus fairly be said that the observations themselves have driven

the investigation.
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In this chapter we summarize the main results of the work described here, discuss the important

limitations of the analyses performed and suggest directions for future contributions to the study of

planetary rings using the radio occultation data.

6.1 Observations and Inferences

Application of the radio occultation data to problems of structure and dynamics requires a high-

resolution data set with which to work. The original collected data have a resolution on the order of

the Fresnel zone size, which is 1-2 km for this experiment. As every Uranian ring with the exception

of Ring e is ,,_ 1 10 km wide, essentially all ring structure is masked by diffraction in the raw data.

Fortunately, the coherent nature of the radio source allows for reconstruction of the actual ring

transmission through an inverse Fresnel transform operation, which can improve the resolution of

the data by almost two orders of magnitude. This technique was initially developed for the almost-

circular Saturnian rings (Marouf et al., 1986), and refined here so as to reconstruct high-resolution

profiles of the significantly eccentric Uranian rings.

From the high resolution diffraction-reconstructed profiles thus produced, we observe significant

radial structure that varies with observation longitude. A number of the rings present dramatically

different personae at the two observation longitudes. A wave-like feature has been observed on the

inner edge of Ring 5. Many of the observed ring edges are found to be quite sharp, with gradients

of optical depth exceeding 1 v/kin, and for most of the rings, the outer edge is significantly sharper

than the inner edge, offering a clue to possibly different mechanisms for confinement of the two

edges. Using the profiles observed at two widely separated longitudes, we have been able to shed

some light on the character of such structure; however, a more complete understanding will require

multiple high-resolution observations spread in longitude and time. Unfortunately, the resolution

of ground-based occultations is limited by diffraction to a few kilometers, and the UVS and PPS

occultations of the entire ring system by the star fl-Persei are severely limited by noise. The higher-

SNR UVS and PPS occultations by the star a-Sagitarii resulted in profiles only of Rings 6 and e

(and the Voyager-discovered Ring 1986U1R) due to the geometry of that occultation.

The sharp edges of many of the rings have led us to search for possible locations of satellites

which might exert gravitational torques to simultaneously confine several ring edges (most of which

have no known source of confinement). A statistically likely location was found just inside Ring 77,

which has relatively low-order strong resonances within 1-3 km of the edges of four rings, and may

also be responsible for driving the wave-like feature of Ring 6. Unfortunately, the amplitude of
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perturbations to ring edges due to such a satellite may well be below the detection threshold of

current observations.

Significant changes in ring width allow inferences of bounds on the vertical thickness of some of

the rings. Observed conservation of integrated optical depth implies that Rings a, % 6, and e are

not monolayers. (Due to a lack of substantial variation in width, we cannot distinguish between

monolayer and many-particle-thick models for the remaining rings.) Further investigation shows

that, under the assumptions of the models used, Ring e must be greater than approximately 10 layers

thick in the neighborhood of periapse (true anomaly 30°). Similar lines of reasoning indicate that

the thickness of Kings c_ and 6 must be at least _ 4 layers, while Ring 7 nmst be thicker than about

10 layers. Conversion of number of layers to ring thickness requires knowledge of typical particle

sizes and typical particle separations, both of which have been investigated here.

In our study of particle sizes, we concentrated on Ring e, due to its relatively low optical depth I ,

and the fact that it is wide enough that significant noise reduction via integration can be obtained.

For all but Ring e, even a signal-to-noise ratio of over 1500 (32 dB) in a one-second integration time

results in 15-40% uncertainty in the estimates of integrated optical depth.

We described three models of the radiowave-ring interaction process which are based on the Mie

theory of scattering by coherently non-interacting spheres. If we require the theoretical predictions

based on these models to match both the optical depth and phase delay behavior of Ring e, then a

lossless refractive index and size distribution exponent q = 2.75 results in a relatively broad range

of sizes which match the data, as long as ami n _< 2 tin and amax _> 150 cn]. Surface mass densities,

assuming an ice-like bulk particle density, are > 50 g-era -_. If, on the other hand, we allow for

the possiblility that the observed phase is of unknown origin, then the observed differential optical

depth may imply an "effective" particle size _> 70 cm, with _r > 80 g-era -2, independent of q.

Given the size information, converting the number of layers into a physical thickness also requires

an estimate of the typical separation between particles. If we interpret the results in a self-consistent

manner, and require that the layers of the thin-layer model be far enough separated so that. coherent

interactions are negligible, then the results of Chapter 5 imply that the layers must be separated

by -,, 5 particle radii. The minimum physical thickness may therefore be from a few meters, for a

less-steep power law exponent (q < 2.75), to a few tens of meters, for q >_ 3.

1 Only the fortuitously large ring opening angle (81.5 °) for the Uranus occultation allows us to consider an average

optical depth of about 1.3 "low"; the small ring opening angle at Saturn (5.9 °) resulted in a threshold normal optical

depth of ,,_ 1, beyond which measurements are buried in noise. Most of Ring B and the dense portions of many wave

features in Ring A exceeded this threshold optical depth.
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The other outer rings (r_, 7, and _) appear to have optical depth and phase delay behavior

quite similar to that of Ring c, although the uncertainties are larger due to smaller widths and in

some cases higher optical depths. The tenuous companions to Rings r/and 8 appear to be relatively

depleted in particles smaller than _ 1 cm in size, as the optical depths observed at radio wavelengths

are comparable to those at much shorter wavelengths.

Above we have suggested that the surface mass density of Ring e is >_ 50 g-cm -_. This is

inconsistent with the surface mass density of _ 30 g-cm -2 implied by the self-gravity theory for

nniform ring precession (Goldreich and Tremaine, 1979b). Other results are also inconsistent with

predictions of the self-gravity theory. For Rings a, fl, and e, empirical eccentricity gradient profiles

have been constructed and compared to those obtained from the theory. The theoretically predicted

profile variation with longitude does not match the observations, most dramatically for Ring e, but

also for Ring ft. For Rings cr and _, uncertainties in the data preclude meaningful bounds on the

surface mass densities, but the self-gravity estimates of_r _ 2 g-cm -2 seem clearly incompatible with

the substantial opacity observed at the 13 cm wavelength. In addition, calculated drag torque due

to the extended exosphere of Uranus (Broadfoot el al., 1986) appears to imply very short lifetimes

( < 1000 years) for centimeter and smaller size particles (Goldreich and Porco, 1987).

Confidence in our empirically-derived eccentricity gradient could be greatly increased if high

quality profiles of Ring e were available at additional longitudes. The derivation of this gradient

profile assumes that the individual particle orbits can be described by Keplerian ellipses, and that

these orbits are aligned in the same direction, that is, that the angle of periapse is constant across

the ring. The derivation also assumes that individual orbits do not cross. Additional profiles would

allow us to test these assumptions directly. Currently work is underway to use all of the Voyager

occultation profiles to construct an eccentricity gradient for Ring e, but progress is slowed by the

difficulty in assessing the noise in the PPS data.

The self-gravity theory, in its form used for comparison purposes here, assumes that that col-

lisional forces are negligible. The lack of observed apse misalignment for Rings a, B, and e tends

to support this assumption (Borderies et al., 1983; French, el al., 1989). In addition, in computing

the mass density of streamlines, it is assumed that mass is proportional to optical depth, which

requires that the distribution of particle sizes remain constant across the ring, and shadowing to be

negligible. Given these caveats, it seems clear that further work is still needed before the apparent

discrepency between the dynamical and observational inferences of the eccentricity gradient profiles

can be resolved.
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One of the most intriguing observations of the Uranian rings is the anomalously large differential

phase delay observed for the five inner rings. We showed that Rings 6, 5, 4, c_, and/3 have significantly

larger phase delay at 13 cm than do the outer rings, Rings 7/, 7, 6, and e. The phase delays for the

3.6 cm wavelength are relatively small for all the rings. The only size distribution which provides

a match with the observations is a near-monodispersion of nearly lossless particles, of a size which

must be within a centimeter or so of the crossing point of the 3.6 and 13 cm extinction curves, a

refractive index dependent value. These are overly restrictive conditions and appear unrealistic. The

strict single size requirement is also dynamically doubtful for a real planetary ring, where collisional

breakup and accretional growth almost surely occur.

6.2 Coherent Interactions

Motivated in part by the anomalous phase behavior of the inner Uranian rings discussed above, we

conducted an analysis of the effects of possible coherent electromagnetic interaction between ring

particles illuminated by a plane-wave radio source. We began with a study of a pair of particles,

and developed a pairwise approximation which we compared to the exact solution for three to five

particles. We then extended this approximation t,o a monolayer of particles. We limited our study

to the case of a monolayer due to the difficulties inherent in extending the pairwise approximation

to a three-dimensional layer. Although a many-particle-thick layer may be studied as a cascade

of monolayers, use of this procedure would require incorporation of coherent inter-la3'er coupling

as well. For this reason we explored the simpler case of a monolayer in order to investigate the

conditions under which coherent interactions are important and to characterize such interactions.

There are certainly indications that the Uranian rings, particularly Ring c, are _ot monolayers; thus

our effort here should be regarded as an essential first step towards the more ambitious goal of fully

understanding the effects of coherent coupling in more realistic ring models.

In the study of the complex extinction behavior of two particles, we found that, even for touching

particles, geometric shadowing is a good model for the exact extinction behavior of particles of size

ka _ 5. For such large particles arranged in an endfire configuration, shadowing effects are significant

for separations up to --_ lOa2/A. For smaller sizes (ka _ 1), coherent interactions are important for

all orientations of the particle-pair relative to the incidence direction and are difficult to characterize

in terms of a simple physical model, such as shadowing.

We also computed the extinction of a pair of particles averaged over orientation and found that,

regardless of the size of the particle, the average coherent interaction becomes negligible beyond a
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particle separation of about five radii (d _ 5a). This implies that for a random spatial distribution

of particles, coherent interactions can be neglected for volume packing fractions less than about 1%,

an explicit criterion for the validity of the "classical" model.

To calculate extinction by a collection of coherently-interacting particles, a pairwise-interaction

model was developed and tested against exact computations for three or more particles. In general,

the approximation was found to agree with the exact computations to within a few percent, except

when more than two particles were aligned along the forward direction. This model was extended to

a monolayer of identical ring particles, and the extinction behavior as a function of size and incidence

angle was investigated. For small particles, coherent effects tend to increase the total extinction,

while for large particles the extinction is decreased relative to the non-interacting case. The large

particle example is fit approximately by a simple model which considers the reduction in signal

intensity to be proportional to the geometric area blocked by the particles; however, the pairwise

approximation results in smaller overall extinction than does the geometric shadowing model. In

all computational models examined, it has generally been observed that coherent interactions tend

to decrease the phase effect relative to the noninteracting case. These results strongly suggest that

the Saturn ring observations should be re-examined in view of the considerable shadowing effects

expected for a 5.9 ° ring opening angle.

It is not clear at what point the assumptions implicit in the pairwise-approximation break down.

Eventually, when particles become close enough, third-order interactions must become important,

and the extinction behavior will diverge from the simple model proposed here. Further work needs

to be done to determine when and how this takes place. In the future, results might be extended to

consider particle size distributions and alternative vertical arrangements.

6.3 A Look to the Future

In the foreseeable future, we do not expect a great deal of additional data on the detailed structure

of the Uranian rings, and the profiles presented here will likely remain one of the best sources of

information on these rings for the next several decades. The results described in this work show the

Uranian rings to be a rich source of interesting and important dynamical and physical problems.

Even though they are much less extensive than the remarkable Saturnian ring system, these narrow

rings are by no means simple. The Voyager radio occultation data offer a tantalizing snapshot of the

rings at a particular moment of time. So as is usual, observers are left wishing for "one more look"

which might offer a few more clues to many of the remaining puzzles. Unfortunately, because of the
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difficulties inherent in traveling to the outer solar system, no return missions to Uranus are currently

planned. From Earth, the flight of Voyager 2 to Uranus took nine years; the continued journey to

Neptune took three more. Only a rare alignment of the outer planets allowed such relatively short

travel times; without the gravity assist from Jupiter, the flight time to Uranus would have been

about 30 years. However, an announcement of opportunity has recently been released by NASA for

the Cassini orbiter mission to Saturn. Saturn is something of an "archetype" for planetary rings; it.

appears to have many of the characteristics of the other three rings systems encompassed in its broad

expanse, including narrow, eccentric features, like the ones considered here. So those who look for

answers to Uranian ring problems may well find enlightenment when Cassini arrives at Saturn just

after the turn of the 21 St century. Of course, given the Voyager experience, it would be foolhardy to

predict what surprises the Saturnian rings may hold in store for us still.
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Appendix A

Noise Limitations

In the text we have referred to various quantities related to additive thermal noise limitations such

as the standard deviation in optical depth at, the standard deviation in coherent phase delay _¢c,

the optical depth threshold rTH, and uncertainty intervals for measured values of optical depth r.

This appendix serves to define some of these quantities.

The experiment measures Ec, which is the complex field strength of the coherent received signal.

Once corrected for diffraction effects (Marouf el al., 1986), the normal optical depth v and coherent

phase ¢c may be calculated fronl

_/2,0 + ice = - In(Z_/E0)*,

where tt0 = sin(B), B is the ring opening angle, E0 is the value of the field strength in the absence

of rings, and * denotes complex conjugate.

Following Marouf et al. (1986), the noise power PN associated with E¢/Eo is given by

PN--
SNR0 Ap'

where SNR0 is the free-space signal-to-noise ratio in a one second integration time (46 and 32 dB

for the 3.6 and 13 cm data, respectively), _ is the radial velocity of the ring plane intercept of the

radio beam (approximately 8.2 kin-see -1 for both ingress and egress here), and Ap is the resolution

of the data in kilometers.

At free space signal levels, the standard deviation of measured normal optical depth is given

approximately by

_r _ _02k/_N •
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Denoting by ru and rL the values of r corresponding to a 70% confidence interval, respectively,

we have

VL : r-- 2/_0ln(1 + _/2 e _'/2u°)

ru -- r-2#01n(1-_e'/2"o),

where C_ = 2.49 (Marouf et al., 1986). These limits are given in Table 11 for resolutions of 50 and

200 m for the 3.6 cm signal. Note in particular the asymmetry of the uncertainty interval, and its

rapid growth as r approaches the threshold opacity, rTH, where

7-TH = --_'0 In(PNC,_/2 ).

Values of rTH for the 3.6 and 13 cm data at several resolutions are given in Table 11; the effect

of lower signal-to-noise ratio for the 13 cm data is readily apparent.

The standard deviation of measured coherent phase delay is given by

a¢o = sin-l[e ('-_)/_"°] 0 < 7" < TTH

ace = rr otherwise.

Uncertainty invervals for both r and ¢c for both wavelengths at 500 m resolution are given in

Table 12.
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T

0.0

1.0
2.0

3.0

4.0
4.5

5.0

5.5

6.0

6.5

7.0

50 m res _ 200 m res

TL b T U TL TU

0 0.15

0.78 1.25

1.64 2.43

2.44 3.78

3.15 5.54

3.45 6.85

3.73 9.46
3.98 oc

4.20 oc

4.39 o¢

4.54

0 0.07

0.89 1.12
1.81 2.20

2.70 3.35

3.53 4.62

3.91 5.34

4.27 6.17
4.60 7.20

4.90 8.68

5.17 12.61

5.41 oo

_UH e

res (m) 50 200 500

3.6 cm 5.2 6.6 7.5

13 cm 2.0 3.4 4.3

TABLE 11: Uncertainty intervals and threshold opacity at 70% confidence level (--_l-c_).
a: The abbreviation "res" stands for resolution.

b: rL and vu define the lower and upper values of the uncertainty interval centered on indicated r.

¢: rTH is the value of v larger than which the uncertainty interval includes 7- -- oo.

r TL(3.6 cm) rv(3.6 cm) rm(13 cm) Tu(13 cm) _+¢(3.6 cm) _¢_(13 cm)
(cycles) (cycles)

0 0 4.5 × 10 -2 0 0.24 3.6 x 10 -3 1.8 x 10 -2

1.0 0.9 1.1 0.7 1.4 6.0 × 10 -3 3.0 x 10 -_

2.0 1.9 2.1 1.5 2.7 9.9 × 10 -3 5.0 × 10 -2

3.0 2.8 3.2 2.2 4.4 1.6 x 10 -2 8.7 × 10 -'_

4.0 3.7 4.4 2.8 7.9 2.7 × 10 -_ 0.16

5.0 4.5 5.7 3.3 oc 4.6 x 10 -2 0.5

TABLE 12:500 m resolution uncertainty intervals (_ 1-a for v and ¢c).
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Appendix B

Dual-wavelength Profiles

ttere we present the low resolution (500 m) profiles not specifically discussed in Chapter 4. In each

figure, the top panel shows the optical depth profile at both 3.6 (heavy curve) and 13 cm (light

curve). The bottom panel shows the phase delay, with increasing phase delay plotted downward.

The scales of Figures 78-93 are the same; the scales of Figures 94 and 25 are compressed due to the

larger width and optical depth of Ring e. The true anomaly of the observation is noted at the top

of each figure.

Note the difference in the phase behavior of the inner rings (6, 5, 4, _, and fl) relative to the

outer rings (7, 5, and e). For the inner rings, there is clear phase delay at the 13 cm wavelength,

and little phase delay at the 3.6 cm wavelength, while for the outer rings, little phase delay is seen

at either wavelength. For example, compare Ring 6 to Ring 7/. These rings have comparable optical

depth, but the phase at 13 cm is delayed by approximatly 0.05 cycles for Ring 6, while there is no

detectable phase change associated with Ring r/. Similarly, Ring 5 at egress and Ring _ at ingress

both have an optical depth of approximately 1.5, but ¢c(13 era) __ 0.1 cycles for Ring 5, while there

is no detectable phase change associated with Ring 5.

Some of the more optically thick rings (Ring 7, and Ring _ at egress) show detectable phase

delay of the 13 cm data; however, given the large opacities, the phase per unit optical depth remains

small.

For almost all of the rings, there is no statistically significant difference in optical depth between

the two wavelengths. The possible exception is Ring fl egress, where a marginal difference (,-, 2-a)

appears to persist over the outer half of the ring. If real, such a difference would indicate the presence

of centimeter-sized particles in this portion of the ring.
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Ring 6 ingress: 144°
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41860 Radius (Km) 41885

FIG. 78: Opacity and phase profiles of Ring 6 observed at ingress. Angle indicated at top is true

anomaly. Heavy curve is for wavelength 3.6 cm, lighter curve for wavelength 13 cm. The 13 cm curve

is significantly noiser due to lower transmitter power as well as smaller system gain for the longer

wavelength. Within the measurement error, there is no detectable difference in optical depth between

the 3.6 and 13 cm wavelengths. There is little effect on the phase at 3.6 cm due to the presence of

the ring; there is, however a detectable effect on the 13 cm phase, with the phase retarded in the

region of the ring by a maximum value of approximately 0.05 cycles. See Table 7 for quantitative
values and confidence intervals.
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FIG. 79: Opacity and phase profiles of Ring 6 observed at egress. See caption of Figure 78 for

details; behavior of this ring is quite similar to that at ingress, with no detectable differential optical

depth, and with apparent phase delay at 13 era.

179



.'II'I'I';NDIXB. DUAL-WAVI'3.ENGTIt PROFILES

Ring 5 ingress: 150 o

O
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42290 42315
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FIG. 80: Opacity and phase profiles of Ring 5 observed at ingress. See caption of Figure 78 for

details. Behavior is qualitatively similar to that of Ring 6.
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Ring 5 egress: 8 0
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0.1
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42140 Radius (Km) 42165

FIG. 81: Opacity and phase profiles of Ring 5 observed at egress. See caption of Figure 78 for details.

Behavior is similar to that of Ring 6 as well as to the other observation of Ring 5 (Figure 80); the

optical depth of this ring is larger than that of Ring 6, however, and the increased amount of material

causes the phase delay at 13 em to be more apparent.
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Ring 4 ingress: 71°
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Fro. 82: Opacity and phase profiles of Ring 4 observed at ingress. See caption of Figure 78 for
details. Once again, the behavior qualitatively resembles that of Ring 6, with no detectable difference

in optical depth between the two wavelengths, but with clear phase delay at 13 cm.
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Ring 4 egress: 289 °
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FIG. 83: Opacity and phase profiles of Ring 4 observed at egress. See caption of Figure 78 for

details. Behavior is similar to that of this ring at. the other observation longitude (Figure 82).
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Ring _x ingress: 124°

0

2

I l i I
3 44725 44750

o

0.0

0.1

I I I I

44725 Radius (Km) 44750

FIG. 84: Opacity and phase profiles of Ring a observed at ingress. See caption of Figure 24 for

details.

184



Ring c_ egress: 340 °
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Fro. 85: Opacity and phase profiles of Ring a observed at egress. See caption of Figure 78 for
details. Similar behavior characterizes the profiles at the two observation longitudes.
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Ring fi ingress: 14°
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FIG. 86: Opacity and phase profiles of Ring _ observed at ingress. See caption of Figure 78 for

details. Ring fl at this observation longitude, like the other inner rings, shows no significant difference

in optical depth between the two wavelengths, but shows significant phase delay at 13 cm, the shape

of which closely follows the optical depth profile.
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FIG. 87: Opacity and phase profiles of Ring /3 observed at egress. See caption of Figure 78 for

details. This observation of Ring /3 is the only one of the 18 profiles observed which appears to

show a marginally detectable (_ 2-_) difference between the 3.6 and 13 cm optical depth profiles, in

this ease in the outer half of the ring. If real, this may be interpreted as evidence for the presence

of particles in the size range of a few to several centimeters. The phase behavior is similar to that

of the other rings, but is less apparent due to the small optical depth, and corresponding smaller
amount of material present in this ring.
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Ring _ ingress: (5 °)

0
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FIG. 88: Opacity and phase profiles of Ring _ observed at ingress. True anomaly is enclosed in

parentheses to indicate its relative uncertainty for this almost circular ring. See caption of Figure 78
for details. Ring r/shows a clear difference in behavior from that of Rings 6-ft. Like those rings, it

shows no significant differentia] optical depth; unlike those rings, however, there is also no detectable

change in the phase at either wavelength due to the presence of the ring. Similar behavior is observed
for all of the outer rings--Ring ,7 through Ring e.
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Ring _qegress: (218°)
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FIG. 89: Opacity and phase profiles of Ring r/ observed at egress. See caption of Figure 78 for

details. There is little detectable difference in optical depth, within the noise limitations, and also

no detectable effect on the phase at either wavelength due to the presence of the ring.
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Ring 7 ingress: (294 °)
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FIG. 90: Opacity and phase profiles of Ring 7 observed at ingress. See caption of Figure 78 for

details. The optical depths at the two wavelengths are similar; there is noticable phase delay at

13 cm. However, given the large optical depth of this ring, the phase per unit optical depth is much
smaller than characteristic values for the inner rings.
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FIG. 91: Opacity and phase profiles of Ring 7 observed at egress. See caption of Figure 78 for

details. The optical depth at 13 cm appears to be smaller than that at 3.6 cm. However, given

the unusually large opacity of the ring, measurements at the 13 cm wavelength in the core of the

ring are highly uncertain, and in fact exceeds the 13 cm threshold optical depth (see Table 11 in
Appendix A). For this reason, the phase delay measurements in the core of the ring are lost in the
noise as well.
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Ring 6 ingress: (123°)
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FIO. 92: Opacity and phase profiles of Ring _ observed at ingress. See caption of Figure 78 for

details. The optical depth behavior at the two wavelengths is quite similar; little phase delay at

either wavelength is evident.

192



t-

0

2

3

Ring 5 egress: (336 °)

4 I I F I
48285 48310

0.0

0.1 5 Km

I I I t

48285 Radius (Km) 48310

FIG. 93: Opacity and phase profiles of Ring 6 observed at egress. See caption of Figure 78 for

details. Optical depth at the two wavelengths is similar; the phase delay at 13 cm is small compared

to that of the inner rings, given the large optical depth of this ring.
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Ring _ ingress: 30 °
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FIG. 94: Opacity and phase profiles of Ring c observed at ingress. See caption of Figure 78 for
details, Scales for this figure as well as Figure 25 differ from those of the previous figures. Optical

depth at the two wavelengths is quite similar, except in the dense core of the ring (outer one-third),

where the 13 cm threshold optical depth (see Appendix A) has been exceeded and measurements

can no longer be confidently interpreted. Phase behavior shows no significant differences due to

the ring, within the noise limitations; the background fluctuations in phase are due to unmodelled

oscillator drift and possibly interplanetary plasma effects.
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Ring _ egress: 241 °
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FIG. 95: Opacity and phase profiles of Ring _ observed at egress. See caption of Figure 25 for
details.
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Appendix C

Eccentricity Gradient Profiles

In Chapter 3 we discussed the computation of the eccentricity gradient profile of a ring using two

radio occultation profiles. Here we outline the procedure in more detail.

We begin with two profiles of optical depth r vs radius 7-. Tile true anomalies of the observations

can be computed from the ring orbital parameters given by French et al. (1988), along with knowledge

of the time of the measurement. We assume that the material distribution in the ring follows non-

intersecting Keplerian streamlines of the form

a(1 - e2(a))

r = 1 + e(a) cos 0p (50)

where 0p is the true anomaly, a is the semimajor axis, and e(a) is the eccentricity at a given a. We

also assume that the lines of apsides of all streamlines are aligned.

Given the radius r of two points on an eccentric streamline, one can solve for a and e using

Eq. 50. We use this method to compute the eccentricity and semimajor axes of the two observed

ring edges; for reference, Table 13 lists a and e for the inner and outer edges of Rings a, fl, and (.

Ring einne r eoute r ainne r aoute r

(xl0 -4) (xl0 -4) (kin) (kin)
a 7.05 7.95 44713.88 44722.15

fl 4.10 4.67 45655.44 45664.97

e 75.41 82.93 51120.08 51176.69

TABLE 13: Estimated eccentricities and semimajor axes of the inner and outer edges of Rings a, fl,
and _.
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The eccentricity and semimajor axis of a streamline within a ring can be computed only if one

has a method for isolating individual streamlines. The method we use relies upon the observation

that integrated optical depth is approximately conserved in each of the three rings considered (see

Table 7). We define streamlines by requiring them to confine equal amounts of integrated optical

depth in the two profiles.

Two profiles at a resolution of 500 m are used. For each profile, we have a set of measurements

of optical depth ri at a set of radii ri. Small differences in observed integrated opacity (_ 4, 7, and

4% for Rings e, a, and fl, respectively; see Table 7) are removed by normalization of both profiles

to the same integrated opacity. Using the normalized profiles, we compute a set of values for the

cumulative sum

i

j=l

where r] is the optical depth of the jth point in the narrower profile. We define a similar set of values

E l for the wider profile. We then interpolate between the pairs (ri, _) to find radii corresponding

to the E I values. This achieved, we now have two radii associated with each streamline, and Eq. 50

is used to compute the corresponding a and e. Subsequently, the eccentricity gradient profile,

q(a) =_ a de(a)/da, is computed numerically from e(a). Results for Rings a, fl, and e are shown in

Figure 22.

Once the eccentricity gradient profile is computed, we "propagate" the wider profile to the lon-

gitude of the narrower profile for comparison. To do this, we must first associate each measurement

of r with an eccentricity for that streamline. Given the radius, we estimate the semimajor axis of

the streamline using

a = r (l + e(a)c°sOp)

As the eccentricity depends on the semimajor axis, several iterations are necessary to compute a

from r. Using the computed eccentricity at that semimajor axis, we determine the amount of stretch

or compression due to the eccentricity gradient by finding the ratio of the distance between adjacent

streamlines in the original profile relative to that distance in the new profile. Each value of optical

depth is multiplied by this ratio to obtain the propagated profile. An example result of this procedure

is shown in the upper panel of Figure 23.
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